Abstract

Biosensors based on liquid crystal (LC) materials can be made by employing the sensitive interfacial effect between LC molecules and alignment layers on substrates. In the past, the optical texture observation method was used in the LC biosensor field. However, the method is limited by a complicated fabrication process and quantitative reproducibility of results that bv evidence that both the reliability and accuracy of LC biosensors need to be improved. In this report, we demonstrate that cholesteric LC (CLC) cells in which one substrate is coated with a vertically aligned layer can be used as a new sensing technology. The chirality of the single vertically anchored (SVA)/CLC biosensor was tested by detecting bovine serum albumin (BSA), a protein standard commonly used in the lab. The colors and corresponding spectrum of the SVA/CLC biosensor changed with the BSA concentrations. A detection limit of 1 ng/ml was observed for the SVA/CLC biosensor. The linear optical properties of the SVA/CLC biosensor produced cheap, inexpensive, and color-indicating detection of biomolecules, and may promote the technology of point-of-care devices for disease-related biomarker detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal

Yu-Cheng Hsiao, Yu-Chien Sung, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 6(12) 5033-5038 (2015)

Label-free protein sensing by employing blue phase liquid crystal

Mon-Juan Lee, Chung-Huan Chang, and Wei Lee
Biomed. Opt. Express 8(3) 1712-1720 (2017)

Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules

Wei-Liang Hsu, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 10(10) 4987-4998 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
    [Crossref]
  2. C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
    [Crossref]
  3. B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein–peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
    [Crossref]
  4. C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
    [Crossref]
  5. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
    [Crossref]
  6. T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
    [Crossref]
  7. H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
    [Crossref]
  8. S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
    [Crossref]
  9. H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
    [Crossref]
  10. Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
    [Crossref]
  11. L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
    [Crossref]
  12. Y.-C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref]
  13. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
    [Crossref]
  14. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(8), 7349–7355 (2011).
    [Crossref]
  15. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
    [Crossref]
  16. Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
    [Crossref]
  17. Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
    [Crossref]
  18. Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
    [Crossref]
  19. Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
    [Crossref]
  20. Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).
    [Crossref]
  21. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
    [Crossref]
  22. P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
    [Crossref]
  23. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667 (2009).
  24. C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
    [Crossref]
  25. A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
    [Crossref]
  26. I. Abdulhalim, “Plasmonic Sensing using Metallic Nano-Sculptured Thin Films,” Small 10(17), 3499–3514 (2014).
    [Crossref]

2015 (7)

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref]

Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
[Crossref]

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

2014 (3)

I. Abdulhalim, “Plasmonic Sensing using Metallic Nano-Sculptured Thin Films,” Small 10(17), 3499–3514 (2014).
[Crossref]

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

2013 (2)

2012 (1)

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref]

2011 (5)

2010 (1)

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref]

2009 (3)

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667 (2009).

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

2008 (1)

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref]

2005 (1)

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein–peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref]

2001 (1)

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

1998 (1)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Abbott, N. L.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein–peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref]

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, “Plasmonic Sensing using Metallic Nano-Sculptured Thin Films,” Small 10(17), 3499–3514 (2014).
[Crossref]

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667 (2009).

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Auslender, M.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Bisoyi, H. K.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Bosch, I.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Chen, C.-H.

Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
[Crossref]

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref]

Chen, C.-Y.

Chen, T. H.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref]

Clare, B. H.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein–peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref]

Cottier, K.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

de Puig, H.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Dong, H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Dubrovsky, T. B.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Gehrke, L.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Goldner, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Gómez-Márquez, J.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Gupta, V. K.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Hadad, B.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Hamad-Schifferli, K.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Hamori, A.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Ho, C. M.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref]

Horvath, R.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Hou, C.-T.

Hsiao, Y.-C.

Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref]

Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
[Crossref]

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
[Crossref]

Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
[Crossref]

Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(8), 7349–7355 (2011).
[Crossref]

Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
[Crossref]

Y.-C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref]

Hsu, Y.-C.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Karabchevsky, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Kim, S. R.

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

Kozma, P.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Krasnykov, O.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Kurunczi, S.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Lee, M.-J.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Lee, W.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
[Crossref]

Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).
[Crossref]

Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
[Crossref]

Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
[Crossref]

Y.-C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref]

Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
[Crossref]

Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(8), 7349–7355 (2011).
[Crossref]

Lee, Y.-H.

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Li, Q.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref]

Li, Y.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Liu, R.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Liu, Y.-J.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).
[Crossref]

Shen, X.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref]

Skaife, J. J.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Song, X.

Su, H.-W.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Sun, L. D.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Sun, S.-H.

Sung, Y.-C.

Tam, J.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Tang, C. Y.

Timofeev, I. V.

Wang, L.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Wang, Y.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref]

Wang, Y. F.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Wong, T. S.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref]

Wu, C.-Y.

Wu, P.-C.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).
[Crossref]

Xue, C.-Y.

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref]

Yan, C. H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Yang, K.-L.

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref]

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref]

Yen, C.-W.

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Zou, Y.-H.

Zyryanov, V. Ya.

Adv. Mater. (3)

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref]

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref]

Anal. Chem. (1)

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B: Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

J. Biomed. Opt. (2)

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

Lab Chip (1)

C.-W. Yen, H. de Puig, J. Tam, J. Gómez-Márquez, I. Bosch, K. Hamad-Schifferli, and L. Gehrke, “Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses,” Lab Chip 15(7), 1638–1641 (2015).
[Crossref]

Langmuir (3)

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref]

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein–peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref]

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Plasmonics (1)

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Science (1)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Sens. Actuators, B (1)

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators, B 155(2), 446–450 (2011).
[Crossref]

Small (1)

I. Abdulhalim, “Plasmonic Sensing using Metallic Nano-Sculptured Thin Films,” Small 10(17), 3499–3514 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the cholesteric liquid crystal (CLC) structures in a single vertically anchored (SVA) cell. The configuration changes from the major reflection to the major transmission mode in the presence of abundant biomolecules on the DMOAP substrate. Here we neglected the top substrate, which was also coated with DMOAP, because the air also induced focal conic state of CLC as DMOAP did.
Fig. 2.
Fig. 2. Polarized optical microscopic images of single vertically anchored/ cholesteric liquid crystal (SVA/CLC) cells under various concentrations of bovine serum albumin (BSA) (0∼1 mg/ml) immobilized on DMOAP-coated glass.
Fig. 3.
Fig. 3. Color-indicating properties of single vertically anchored/cholesteric liquid crystal (SVA/CLC) biosensors at different bovine serum albumin (BSA) concentrations.
Fig. 4.
Fig. 4. The optical mechanism of the single vertically anchored (SVA) biosensor in both major reflection and transmittance modes.
Fig. 5.
Fig. 5. Transmission spectra of the single vertically anchored/cholesteric liquid crystal (SVA/CLC) biosensor prepared with various concentrations of bovine serum albumin (BSA) (0∼1 mg/ml).
Fig. 6.
Fig. 6. Correlations of the bandwidth of Bragg’s reflection of single vertically anchored/cholesteric liquid crystal (SVA/CLC) biosensor at different bovine serum albumin (BSA) concentrations.
Fig. 7.
Fig. 7. Linear correlations of the minimum transmittance of Bragg’s reflection of biosensor at different bovine serum albumin (BSA) concentrations.

Metrics