Abstract

Voice disorders affect a large number of adults in the United States, and their clinical evaluation heavily relies on laryngeal videostroboscopy, which captures the medial-lateral and anterior-posterior motion of the vocal folds using stroboscopic sampling. However, videostroboscopy does not provide direct visualization of the superior-inferior movement of the vocal folds, which yields important clinical insight. In this paper, we present a novel technology that complements videostroboscopic findings by adding the ability to image the coronal plane and visualize the superior-inferior movement of the vocal folds. The technology is based on optical coherence tomography, which is combined with videostroboscopy within the same endoscopic probe to provide spatially and temporally co-registered images of the mucosal wave motion, as well as vocal folds subsurface morphology. We demonstrate the capability of the rigid endoscopic probe, in a benchtop setting, to characterize the complex movement and subsurface structure of the aerodynamically driven excised larynx models within the 50 to 200 Hz phonation range. Our preliminary results encourage future development of this technology with the goal of its use for in vivo laryngeal imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter

Ki Hean Kim, James A. Burns, Jonathan J. Bernstein, Gopi N. Maguluri, B. Hyle Park, and Johannes F. de Boer
Opt. Express 18(14) 14644-14653 (2010)

Dual instrument for in vivo and ex vivo OCT imaging in an ENT department

Ramona Cernat, Taran S. Tatla, Jingyin Pang, Paul J. Tadrous, Adrian Bradu, George Dobre, Grigory Gelikonov, Valentin Gelikonov, and Adrian Gh. Podoleanu
Biomed. Opt. Express 3(12) 3346-3356 (2012)

Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT

Gangjun Liu, Marc Rubinstein, Arya Saidi, Wenjuan Qi, Allen Foulad, Brian Wong, and Zhongping Chen
Opt. Express 19(12) 11880-11889 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Bhattacharyya, “The prevalence of voice problems among adults in the United States,” Laryngoscope 124(10), 2359–2362 (2014).
    [Crossref]
  2. N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
    [Crossref]
  3. NIDCD, Statistics on Voice, Speech and Language, National Institute of Deafness and Other Communication Disorders (NIDCD), July 2016. https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-language
  4. K. A. Kendall, “High-speed digital imaging of the larynx: recent advances,” Curr Opin Otolaryngol Head Neck Surg 20(6), 466–471 (2012).
    [Crossref]
  5. D. M. Bless, M. Hirano, and R. J. Feder, “Videostroboscopic evaluation of the larynx,” Ear Nose Throat J 66, 289–296 (1987).
  6. N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
    [Crossref]
  7. D. D. Mehta and R. E. Hillman, “Current role of stroboscopy in laryngeal imaging,” Curr Opin Otolaryngol Head Neck Surg 20(6), 429–436 (2012).
    [Crossref]
  8. B. J. Poburka, “A new stroboscopy rating form,” J Voice 13(3), 403–413 (1999).
    [Crossref]
  9. S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
    [Crossref]
  10. C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
    [Crossref]
  11. D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
    [Crossref]
  12. R. Patel, S. Dailey, and D. Bless, “Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders,” Ann. Otol., Rhinol., Laryngol. 117(6), 413–424 (2008).
    [Crossref]
  13. G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
    [Crossref]
  14. D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology,” J. Speech Hear. Res. 58(5), 1488–1492 (2015).
    [Crossref]
  15. J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
    [Crossref]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  17. J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
    [Crossref]
  18. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [Crossref]
  19. J. A. Burns, “Optical coherence tomography: imaging the larynx,” Curr Opin Otolaryngol Head Neck Surg 20(6), 477–481 (2012).
    [Crossref]
  20. K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
    [Crossref]
  21. B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
    [Crossref]
  22. L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
    [Crossref]
  23. C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
    [Crossref]
  24. G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, and Z. Chen, “Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT,” Opt. Express 19(12), 11880–11889 (2011).
    [Crossref]
  25. F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
    [Crossref]
  26. B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
    [Crossref]
  27. B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
    [Crossref]
  28. G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
    [Crossref]
  29. G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
    [Crossref]
  30. M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
    [Crossref]
  31. M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
    [Crossref]
  32. N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
    [Crossref]
  33. N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
    [Crossref]
  34. H. C. Hendargo, R. P. McNabb, A. H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
    [Crossref]
  35. American National Standards Institute (ANSI), American National Standard for the Safe Use of Lasers. American National Standard Institute, Inc., New York Standard Z136.1, 2000.
  36. R. E. Hillman and D. D. Mehta, “The science of stroboscopic imaging,” in Laryngeal Imaging: Indirect Laryngoscopy to High-Speed Digital Imaging, K.A. Kendall and R. J. Leonard, eds. (Thieme Medical Publisher, Inc., 2010).
  37. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
    [Crossref]
  38. M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
    [Crossref]
  39. D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 MHz,” Opt. Lett. 39(18), 5333–5336 (2014).
    [Crossref]
  40. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
    [Crossref]
  41. Olympus, “Laryngoscope,” http://medical.olympusamerica.com/products/rigid-laryngoscope .

2018 (2)

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

2017 (1)

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

2016 (3)

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

2015 (3)

D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology,” J. Speech Hear. Res. 58(5), 1488–1492 (2015).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref]

G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
[Crossref]

2014 (2)

2013 (1)

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

2012 (3)

D. D. Mehta and R. E. Hillman, “Current role of stroboscopy in laryngeal imaging,” Curr Opin Otolaryngol Head Neck Surg 20(6), 429–436 (2012).
[Crossref]

K. A. Kendall, “High-speed digital imaging of the larynx: recent advances,” Curr Opin Otolaryngol Head Neck Surg 20(6), 466–471 (2012).
[Crossref]

J. A. Burns, “Optical coherence tomography: imaging the larynx,” Curr Opin Otolaryngol Head Neck Surg 20(6), 477–481 (2012).
[Crossref]

2011 (3)

2010 (3)

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref]

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
[Crossref]

2009 (3)

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

2008 (4)

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

R. Patel, S. Dailey, and D. Bless, “Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders,” Ann. Otol., Rhinol., Laryngol. 117(6), 413–424 (2008).
[Crossref]

2007 (1)

S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
[Crossref]

2005 (4)

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
[Crossref]

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref]

1999 (1)

B. J. Poburka, “A new stroboscopy rating form,” J Voice 13(3), 403–413 (1999).
[Crossref]

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1987 (1)

D. M. Bless, M. Hirano, and R. J. Feder, “Videostroboscopic evaluation of the larynx,” Ear Nose Throat J 66, 289–296 (1987).

Anderson, R. R.

S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
[Crossref]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

Armstrong, W. B.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Barkmeier-Kraemer, J.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

Beaudette, K.

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

Benboujja, F.

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

Bernstein, J. J.

Bhattacharyya, N.

N. Bhattacharyya, “The prevalence of voice problems among adults in the United States,” Laryngoscope 124(10), 2359–2362 (2014).
[Crossref]

Birk, V.

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

Blatter, C.

Bless, D.

R. Patel, S. Dailey, and D. Bless, “Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders,” Ann. Otol., Rhinol., Laryngol. 117(6), 413–424 (2008).
[Crossref]

Bless, D. M.

D. M. Bless, M. Hirano, and R. J. Feder, “Videostroboscopic evaluation of the larynx,” Ear Nose Throat J 66, 289–296 (1987).

Blitzer, A.

S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
[Crossref]

Bonilha, H. S.

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Boudoux, C.

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Burns, J. A.

J. A. Burns, “Optical coherence tomography: imaging the larynx,” Curr Opin Otolaryngol Head Neck Surg 20(6), 477–481 (2012).
[Crossref]

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

Chang, E. W.

J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
[Crossref]

Chang, T. H.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, J. J.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Chen, Z.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, and Z. Chen, “Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT,” Opt. Express 19(12), 11880–11889 (2011).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Chigan, P.

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

Cho, K.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Chou, L. D.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Coughlan, C. A.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Crumley, R. L.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Dailey, S.

R. Patel, S. Dailey, and D. Bless, “Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders,” Ann. Otol., Rhinol., Laryngol. 117(6), 413–424 (2008).
[Crossref]

Dailey, S. H.

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

de Boer, J. F.

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

de Mul, F. F.

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

Deliyski, D. D.

D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology,” J. Speech Hear. Res. 58(5), 1488–1492 (2015).
[Crossref]

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

Dhalla, A. H.

Dollinger, M.

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
[Crossref]

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

Drexler, W.

Eadie, T.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

Eysholdt, U.

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

Fechtig, D. J.

Feder, R. J.

D. M. Bless, M. Hirano, and R. J. Feder, “Videostroboscopic evaluation of the larynx,” Ear Nose Throat J 66, 289–296 (1987).

Fercher, A.

Ferguson, R. D.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Foulad, A.

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Garcia, J. A.

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

Ge, Z.

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

George, N. A.

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

Gerlach, T. T.

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

Gerratt, B. R.

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

Goddard, J. A.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Grajciar, B.

Gray, S. D.

N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Gu, M.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Guo, S.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Hammer, D. X.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Hartnick, C. J.

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hendargo, H. C.

Hillman, R.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

Hillman, R. E.

D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology,” J. Speech Hear. Res. 58(5), 1488–1492 (2015).
[Crossref]

D. D. Mehta and R. E. Hillman, “Current role of stroboscopy in laryngeal imaging,” Curr Opin Otolaryngol Head Neck Surg 20(6), 429–436 (2012).
[Crossref]

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
[Crossref]

R. E. Hillman and D. D. Mehta, “The science of stroboscopic imaging,” in Laryngeal Imaging: Indirect Laryngoscopy to High-Speed Digital Imaging, K.A. Kendall and R. J. Leonard, eds. (Thieme Medical Publisher, Inc., 2010).

Hirano, M.

D. M. Bless, M. Hirano, and R. J. Feder, “Videostroboscopic evaluation of the larynx,” Ear Nose Throat J 66, 289–296 (1987).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Iftimia, N. V.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Izatt, J. A.

Jackson, R. P.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Jiang, J. J.

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

Jing, B.

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

Jing, J. C.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Kempster, G. B.

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

Kendall, K. A.

K. A. Kendall, “High-speed digital imaging of the larynx: recent advances,” Curr Opin Otolaryngol Head Neck Surg 20(6), 466–471 (2012).
[Crossref]

Kim, K. H.

Kniesburges, S.

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

Kobler, J. B.

G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
[Crossref]

J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
[Crossref]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

Krausert, C. R.

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

Lee, D.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, G.

G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, and Z. Chen, “Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT,” Opt. Express 19(12), 11880–11889 (2011).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

Luegmair, G.

G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
[Crossref]

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

Maguluri, G. N.

Mahmood, U.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Martin-Harris, B.

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

McMurray, J. S.

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

McNabb, R. P.

Mehta, D.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

Mehta, D. D.

G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
[Crossref]

D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology,” J. Speech Hear. Res. 58(5), 1488–1492 (2015).
[Crossref]

D. D. Mehta and R. E. Hillman, “Current role of stroboscopy in laryngeal imaging,” Curr Opin Otolaryngol Head Neck Surg 20(6), 429–436 (2012).
[Crossref]

R. E. Hillman and D. D. Mehta, “The science of stroboscopic imaging,” in Laryngeal Imaging: Indirect Laryngoscopy to High-Speed Digital Imaging, K.A. Kendall and R. J. Leonard, eds. (Thieme Medical Publisher, Inc., 2010).

Merrill, R. M.

N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
[Crossref]

Mujat, M.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Olszewski, A. E.

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

Park, B. H.

Patel, R.

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

R. Patel, S. Dailey, and D. Bless, “Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders,” Ann. Otol., Rhinol., Laryngol. 117(6), 413–424 (2008).
[Crossref]

Patel, R. R.

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

Paul, D.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

Petrushev, P. P.

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

Pierce, M. C.

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

Pircher, M.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Poburka, B. J.

B. J. Poburka, “A new stroboscopy rating form,” J Voice 13(3), 403–413 (1999).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qi, W.

Qiu, Q.

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

Rakhorst, G.

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

Rangarajan, S.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Ridgway, J. M.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Roy, N.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
[Crossref]

Rubinstein, M.

G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, and Z. Chen, “Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT,” Opt. Express 19(12), 11880–11889 (2011).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

Saidi, A.

G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, and Z. Chen, “Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT,” Opt. Express 19(12), 11880–11889 (2011).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

Schmoll, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Schutte, H. K.

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

Schutzenberger, A.

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

Semmler, M.

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

Sharma, G. K.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Shepherd, N.

Shibuya, T. Y.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Sivasankar, M. P.

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

Smith, E. M.

N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
[Crossref]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Strupler, M.

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

Su, J.

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Sutor, A.

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Taylor, L. N.

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Verdolini Abbott, K.

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

Wan, M.

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

Wang, S.

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

Werkmeister, R. M.

Wong, B.

Wong, B. J.

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

Wu, L.

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

Yu, L.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

Yun, S. H.

J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
[Crossref]

Zeitels, S. M.

J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
[Crossref]

S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
[Crossref]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

Ziethe, A.

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

Zimmermann, M.

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

Am J Speech Lang Pathol (2)

N. Roy, J. Barkmeier-Kraemer, T. Eadie, M. P. Sivasankar, D. Mehta, D. Paul, and R. Hillman, “Evidence-based clinical voice assessment: a systematic review,” Am J Speech Lang Pathol 22(2), 212–226 (2013).
[Crossref]

G. B. Kempster, B. R. Gerratt, K. Verdolini Abbott, J. Barkmeier-Kraemer, and R. E. Hillman, “Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol,” Am J Speech Lang Pathol 18(2), 124–132 (2009).
[Crossref]

Ann. Otol., Rhinol., Laryngol. (3)

R. Patel, S. Dailey, and D. Bless, “Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders,” Ann. Otol., Rhinol., Laryngol. 117(6), 413–424 (2008).
[Crossref]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol., Rhinol., Laryngol. 114(9), 671–676 (2005).
[Crossref]

S. M. Zeitels, A. Blitzer, R. E. Hillman, and R. R. Anderson, “Foresight in laryngology and laryngeal surgery: a 2020 vision,” Ann. Otol., Rhinol., Laryngol. 116(9_suppl), 2–16 (2007).
[Crossref]

Biomed. Opt. Express (2)

Curr Opin Otolaryngol Head Neck Surg (3)

D. D. Mehta and R. E. Hillman, “Current role of stroboscopy in laryngeal imaging,” Curr Opin Otolaryngol Head Neck Surg 20(6), 429–436 (2012).
[Crossref]

K. A. Kendall, “High-speed digital imaging of the larynx: recent advances,” Curr Opin Otolaryngol Head Neck Surg 20(6), 466–471 (2012).
[Crossref]

J. A. Burns, “Optical coherence tomography: imaging the larynx,” Curr Opin Otolaryngol Head Neck Surg 20(6), 477–481 (2012).
[Crossref]

Ear Nose Throat J (1)

D. M. Bless, M. Hirano, and R. J. Feder, “Videostroboscopic evaluation of the larynx,” Ear Nose Throat J 66, 289–296 (1987).

Folia Phoniatr. (1)

D. D. Deliyski, P. P. Petrushev, H. S. Bonilha, T. T. Gerlach, B. Martin-Harris, and R. E. Hillman, “Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution,” Folia Phoniatr. 60(1), 33–44 (2008).
[Crossref]

IEEE Trans Med Imaging (3)

G. Luegmair, S. Kniesburges, M. Zimmermann, A. Sutor, U. Eysholdt, and M. Dollinger, “Optical reconstruction of high-speed surface dynamics in an uncontrollable environment,” IEEE Trans Med Imaging 29(12), 1979–1991 (2010).
[Crossref]

G. Luegmair, D. D. Mehta, J. B. Kobler, and M. Dollinger, “Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,” IEEE Trans Med Imaging 34(12), 2572–2582 (2015).
[Crossref]

M. Semmler, S. Kniesburges, V. Birk, A. Ziethe, R. Patel, and M. Dollinger, “3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,” IEEE Trans Med Imaging 35(7), 1615–1624 (2016).
[Crossref]

J Voice (2)

B. J. Poburka, “A new stroboscopy rating form,” J Voice 13(3), 403–413 (1999).
[Crossref]

C. R. Krausert, A. E. Olszewski, L. N. Taylor, J. S. McMurray, S. H. Dailey, and J. J. Jiang, “Mucosal wave measurement and visualization techniques,” J Voice 25(4), 395–405 (2011).
[Crossref]

J. Acoust. Soc. Am. (2)

B. Jing, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography,” J. Acoust. Soc. Am. 143(5), EL425–EL429 (2018).
[Crossref]

B. Jing, P. Chigan, Z. Ge, L. Wu, S. Wang, and M. Wan, “Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography,” J. Acoust. Soc. Am. 141(5), 3312–3322 (2017).
[Crossref]

J. Biomed. Opt. (3)

F. Benboujja, J. A. Garcia, K. Beaudette, M. Strupler, C. J. Hartnick, and C. Boudoux, “Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography,” J. Biomed. Opt. 21(1), 016007 (2016).
[Crossref]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[Crossref]

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction,” J. Biomed. Opt. 13(6), 064024 (2008).
[Crossref]

J. Speech Hear. Res. (1)

D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology,” J. Speech Hear. Res. 58(5), 1488–1492 (2015).
[Crossref]

Laryngoscope (5)

J. B. Kobler, E. W. Chang, S. M. Zeitels, and S. H. Yun, “Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography,” Laryngoscope 120(7), 1354–1362 (2010).
[Crossref]

N. Bhattacharyya, “The prevalence of voice problems among adults in the United States,” Laryngoscope 124(10), 2359–2362 (2014).
[Crossref]

N. Roy, R. M. Merrill, S. D. Gray, and E. M. Smith, “Voice disorders in the general population: prevalence, risk factors, and occupational impact,” Laryngoscope 115(11), 1988–1995 (2005).
[Crossref]

B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope 115(11), 1904–1911 (2005).
[Crossref]

M. Semmler, M. Dollinger, R. R. Patel, A. Ziethe, and A. Schutzenberger, “Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation,” Laryngoscope 128(10), 2367–2374 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

N. A. George, F. F. de Mul, Q. Qiu, G. Rakhorst, and H. K. Schutte, “Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics,” Phys. Med. Biol. 53(10), 2667–2675 (2008).
[Crossref]

Proc. SPIE (1)

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Sci. Rep. (1)

C. A. Coughlan, L. D. Chou, J. C. Jing, J. J. Chen, S. Rangarajan, T. H. Chang, G. K. Sharma, K. Cho, D. Lee, J. A. Goddard, Z. Chen, and B. J. Wong, “In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography,” Sci. Rep. 6(1), 22792 (2016).
[Crossref]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Other (4)

NIDCD, Statistics on Voice, Speech and Language, National Institute of Deafness and Other Communication Disorders (NIDCD), July 2016. https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-language

American National Standards Institute (ANSI), American National Standard for the Safe Use of Lasers. American National Standard Institute, Inc., New York Standard Z136.1, 2000.

R. E. Hillman and D. D. Mehta, “The science of stroboscopic imaging,” in Laryngeal Imaging: Indirect Laryngoscopy to High-Speed Digital Imaging, K.A. Kendall and R. J. Leonard, eds. (Thieme Medical Publisher, Inc., 2010).

Olympus, “Laryngoscope,” http://medical.olympusamerica.com/products/rigid-laryngoscope .

Supplementary Material (1)

NameDescription
» Visualization 1       Video showing synchronous dynamic vocal fold imaging during phonation. It is a mock-up of graphical user interface in stroboscopic OCT-VS mode. The video and OCT data were collected from a phonating human ex-vivo larynx and were combined using post-p

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the OCT/VS system; Abbreviations: Cir- Circulator; FPGA- Field Programmable Gated Array; Mic- Microphone; FBS- fiber beam splitter; GPU- Graphical Processing Unit; PC- Polarization Controller; DAQ- Data Acquisition Card; ODL- Optical Delay Line; Disp- Dispersion.
Fig. 2.
Fig. 2. Photographs of the instrument and tissue specimen fixtures. A- OCT instrumentation unit; B- OCT/video imaging probe; C- Tissue specimen fixture.
Fig. 3.
Fig. 3. OCT synchronization scheme for stroboscopic imaging. Data was captured from previously frozen human larynx
Fig. 4.
Fig. 4. Flow chart for image processing and visualization
Fig. 5.
Fig. 5. Example of a cross-sectional OCT image of human excised vocal folds. (A) large-scale image; (B) 2.5X magnified area; (C) example of histology (from a different specimen). Legend: e-epithelium; SLP-Superficial lamina propria; VL-vocal ligament
Fig. 6.
Fig. 6. Example of synchronized OCT-VS imaging of vocal folds showing 10 temporal phases (only 5 representative OCT B-scans are shown here)
Fig. 7.
Fig. 7. Example of synchronized OCT-VS imaging of calf vocal folds. A1-B1-C1: VS images for 3 different openings of the VFs; A2-B2-C2: Corresponding cross-sectional OCT images at the middle of the opening, as indicated by red arrows; A3-B3-C3: Reconstructed OCT images from the interpolation of 10 B-scans; A4-B4-C4: VS images reconstructed based on the OCT images.
Fig. 8.
Fig. 8. Mock-up of graphical user interface in stroboscopic OCT-VS mode. The video and OCT data were collected from a phonating human ex-vivo larynx and were combined using post-processing to simulate the display interface [Visualization 1]
Fig. 9.
Fig. 9. a) Illustration of vocal fold position for five different phases in the middle of the opening, as derived from the OCT B-scans. b) Vocal fold maximum velocity in the superior-inferior dimension at points in the medial-lateral dimension, as derived from the surface position at different time intervals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l s A r / ( f 0 ϕ n )

Metrics