Abstract

We present a rapidly tunable dual-output all-fiber light source for coherent Raman imaging, based on a dispersively matched mode-locked laser pumping a parametric oscillator. Output pump and Stokes pulses with a maximal power of 170 and 400 mW, respectively, and equal durations of 7 ps could be generated. The tuning mechanism required no mechanical delay line, enabling all-electronic arbitrary wavelength switching across more than 2700 $\textrm {cm}^{-1}$ in less than 5 ms. The compact setup showed a reliable operation despite mechanical shocks of more than 25 $\textrm {m}/\textrm {s}^2$ and is, thus, well suited for operation in a mobile cart. Imaging mouse and human skin tissue with both the portable light source and a commercial laboratory-bound reference system yielded qualitatively equal results and verified the portable light source being well suited for coherent Raman microscopy.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy

Kangwen Yang, Shikai Zheng, Yuxing Wu, Pengbo Ye, Kun Huang, Qiang Hao, and Heping Zeng
Opt. Express 26(13) 17519-17528 (2018)

Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing

Martin Baumgartl, Thomas Gottschall, Javier Abreu-Afonso, Antonio Díez, Tobias Meyer, Benjamin Dietzek, Manfred Rothhardt, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(19) 21010-21018 (2012)

All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion

Martin Baumgartl, Mario Chemnitz, Cesar Jauregui, Tobias Meyer, Benjamin Dietzek, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(4) 4484-4493 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
    [Crossref]
  2. F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
    [Crossref]
  3. T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
    [Crossref]
  4. C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
    [Crossref]
  5. E. Potma and S. Mukamel, Coherent Raman Scattering Microscopy (CRC Press, Taylor & Francis Group, 2013).
  6. C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
    [Crossref]
  7. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [Crossref]
  8. Y. Yang, F. Li, L. Gao, Z. Wang, M. J. Thrall, S. S. Shen, K. K. Wong, and S. T. Wong, “Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging,” Biomed. Opt. Express 2(8), 2160–2174 (2011).
    [Crossref]
  9. S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
    [Crossref]
  10. M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
    [Crossref]
  11. I. W. Schie, C. Krafft, and J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140(12), 3897–3909 (2015).
    [Crossref]
  12. D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
    [Crossref]
  13. A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
    [Crossref]
  14. T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
    [Crossref]
  15. M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
    [Crossref]
  16. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
    [Crossref]
  17. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [Crossref]
  18. S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2(5), 1296–1306 (2011).
    [Crossref]
  19. D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
    [Crossref]
  20. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref]
  21. C. Pohling, T. Buckup, A. Pagenstecher, and M. Motzkus, “Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy,” Biomed. Opt. Express 2(8), 2110–2116 (2011).
    [Crossref]
  22. L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
    [Crossref]
  23. T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
    [Crossref]
  24. D. Churin, R. Olson, N. Peyghambarian, and K. Kieu, “High power, widely tunable synchronously pumped fiber-based optical parametric oscillator,” in 2016 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2016) pp. 1–2.
  25. T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7
  26. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
    [Crossref]
  27. G. Agrawal, Applications of nonlinear fiber optics (Elsevier, 2001).
  28. M. Brinkmann, S. Janfrüchte, T. Hellwig, S. Dobner, and C. Fallnich, “Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy,” Opt. Lett. 41(10), 2193–2196 (2016).
    [Crossref]
  29. S. Zhou, D. G. Ouzounov, and F. W. Wise, “Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz,” Opt. Lett. 31(8), 1041–1043 (2006).
    [Crossref]
  30. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9299–9306 (2006).
    [Crossref]
  31. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
    [Crossref]
  32. K. M. Hanson and C. J. Bardeen, “Application of nonlinear optical microscopy for imaging skin,” Photochem. Photobiol. 85(1), 33–44 (2009).
    [Crossref]
  33. H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
    [Crossref]
  34. S. Osseiran, J. D. Cruz, S. Jeong, H. Wang, C. Fthenakis, and C. L. Evans, “Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent Raman scattering imaging,” Biomed. Opt. Express 9(12), 6425–6443 (2018).
    [Crossref]
  35. C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
    [Crossref]
  36. L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: Could high throughput vibrational spectroscopic screening improve drug development,” Vib. Spectrosc. 91, 16–30 (2017).
    [Crossref]
  37. T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
    [Crossref]
  38. L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
    [Crossref]
  39. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref]
  40. Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
    [Crossref]
  41. M. R. Hamblin, P. Avci, and G. K. Gupta, Imaging in Dermatology (Academic Press, 2016).

2018 (4)

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

S. Osseiran, J. D. Cruz, S. Jeong, H. Wang, C. Fthenakis, and C. L. Evans, “Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent Raman scattering imaging,” Biomed. Opt. Express 9(12), 6425–6443 (2018).
[Crossref]

2017 (3)

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: Could high throughput vibrational spectroscopic screening improve drug development,” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

2016 (4)

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

M. Brinkmann, S. Janfrüchte, T. Hellwig, S. Dobner, and C. Fallnich, “Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy,” Opt. Lett. 41(10), 2193–2196 (2016).
[Crossref]

2015 (4)

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

I. W. Schie, C. Krafft, and J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140(12), 3897–3909 (2015).
[Crossref]

2014 (3)

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

2013 (4)

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref]

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

2012 (2)

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

2011 (4)

2010 (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

2009 (2)

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

K. M. Hanson and C. J. Bardeen, “Application of nonlinear optical microscopy for imaging skin,” Photochem. Photobiol. 85(1), 33–44 (2009).
[Crossref]

2006 (3)

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

2002 (1)

Agrawal, G.

G. Agrawal, Applications of nonlinear fiber optics (Elsevier, 2001).

Akimov, D.

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Anderson, R. R.

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

Andresen, E. R.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Asano, M.

Austin, L. A.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Avci, P.

M. R. Hamblin, P. Avci, and G. K. Gupta, Imaging in Dermatology (Academic Press, 2016).

Babrah, J.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Baker, R.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Bardeen, C. J.

K. M. Hanson and C. J. Bardeen, “Application of nonlinear optical microscopy for imaging skin,” Photochem. Photobiol. 85(1), 33–44 (2009).
[Crossref]

Baumgartl, M.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Bazant-Hegemark, F.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Bégin, S.

Bergner, N.

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Bielecki, C.

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Bocklitz, T. W.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Boppart, S. A.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Boren, J.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Boyle, J.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Bräuer, R.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Brehm, B. R.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Breunig, H.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

Breunig, H. G.

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Brindle, K. M.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Brinkmann, M.

Bückle, R.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Buckup, T.

Burgoyne, B.

Byrne, H. J.

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: Could high throughput vibrational spectroscopic screening improve drug development,” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

Camelo-Piragua, S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Camp Jr, C. H.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Canfield, N.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Carrasco, S.

Chaney, E. J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Chen, X.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Chen, Z.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Cheng, J.-X.

Chernavskaia, O.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Churin, D.

D. Churin, R. Olson, N. Peyghambarian, and K. Kieu, “High power, widely tunable synchronously pumped fiber-based optical parametric oscillator,” in 2016 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2016) pp. 1–2.

Cicerone, M. T.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Côté, D.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2(5), 1296–1306 (2011).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

Côté, D. C.

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

Cruz, J. D.

Dantus, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Darvin, M.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

de Sena-Tomas, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

DePaoli, D. T.

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

Dietzek, B.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Dobner, S.

Eidam, T.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Evans, C. L.

S. Osseiran, J. D. Cruz, S. Jeong, H. Wang, C. Fthenakis, and C. L. Evans, “Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent Raman scattering imaging,” Biomed. Opt. Express 9(12), 6425–6443 (2018).
[Crossref]

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

Fabert, M.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Fallnich, C.

Fisher-Hubbard, A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Freudiger, C. W.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Fthenakis, C.

Fu, D.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Ganikhanov, F.

Gao, L.

Garrard, M.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Garton, H. J.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Gottschall, T.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Gowda, R.

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

Greten, F. R.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Guntinas-Lichius, O.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Gupta, G. K.

M. R. Hamblin, P. Avci, and G. K. Gupta, Imaging in Dermatology (Academic Press, 2016).

Hamblin, M. R.

M. R. Hamblin, P. Avci, and G. K. Gupta, Imaging in Dermatology (Academic Press, 2016).

Hanson, K. M.

K. M. Hanson and C. J. Bardeen, “Application of nonlinear optical microscopy for imaging skin,” Photochem. Photobiol. 85(1), 33–44 (2009).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Hartshorn, C. M.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Heddleston, J.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Hellwig, T.

Hervey-Jumper, S. L.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Heth, J. A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Heuke, S.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

Hight Walker, A. R.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Hollon, T. C.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Hutchings, J.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Isabelle, M.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Jalian, H. R.

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

Jamieson, L. E.

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: Could high throughput vibrational spectroscopic screening improve drug development,” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

Janfrüchte, S.

Jauregui, C.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

Jeong, S.

Ji, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref]

Johnson, T. D.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Joly, N.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Jones, D. J.

Jung, Y.

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

Just, F.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

Kalff, R.

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Katz, M.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Kellner-Höfer, M.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Kendall, C.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Kieu, K.

D. Churin, R. Olson, N. Peyghambarian, and K. Kieu, “High power, widely tunable synchronously pumped fiber-based optical parametric oscillator,” in 2016 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2016) pp. 1–2.

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

Klemp, M.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

Kluschke, F.

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

König, K.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Kopf, D.

Krafft, C.

I. W. Schie, C. Krafft, and J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140(12), 3897–3909 (2015).
[Crossref]

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Kudlinski, A.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Lademann, J.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Lægsgaard, J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Lamb, E. S.

Lapointe, N.

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

Lee, Y. J.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Lefrancois, S.

Legesse, F. B.

F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
[Crossref]

Lewis, S.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Li, F.

Limpert, J.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

Liu, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Liu, Y.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Liu, Z.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Lombardini, A.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Louradour, F.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Lyngsø, J. K.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Mahajan, S.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Maher, C. O.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Marjanovic, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Marsac, P. J.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Matthäus, C.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Medyukhina, A.

F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
[Crossref]

Mercier, V.

Messaddeq, Y.

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

Meyer, T.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Min, W.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Motzkus, M.

Mukamel, S.

E. Potma and S. Mukamel, Coherent Raman Scattering Microscopy (CRC Press, Taylor & Francis Group, 2013).

Mytskaniuk, V.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Nguyen, T.

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

Niknafs, Y. S.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Olson, R.

D. Churin, R. Olson, N. Peyghambarian, and K. Kieu, “High power, widely tunable synchronously pumped fiber-based optical parametric oscillator,” in 2016 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2016) pp. 1–2.

Orr, L.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Orringer, D. A.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Osseiran, S.

Ota, T.

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

Ouzounov, D. G.

Pagenstecher, A.

Pandian, B.

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Parent, M.

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

Pascher, T.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Patel, I. I.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Petersen, I.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

D. Churin, R. Olson, N. Peyghambarian, and K. Kieu, “High power, widely tunable synchronously pumped fiber-based optical parametric oscillator,” in 2016 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2016) pp. 1–2.

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Pohling, C.

Popp, J.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
[Crossref]

I. W. Schie, C. Krafft, and J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140(12), 3897–3909 (2015).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Potma, E.

E. Potma and S. Mukamel, Coherent Raman Scattering Microscopy (CRC Press, Taylor & Francis Group, 2013).

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Puoris’ haag, M.

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

Ramkissoon, S. H.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Reichart, R.

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Reichelt, S.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Rhodes, T. A.

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Rigneault, H.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Romeike, B. F.

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

Romeike, B. F. M.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Röwert-Huber, H.-J.

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Sagher, O.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Salah, F. S.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Sanai, N.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Schie, I. W.

I. W. Schie, C. Krafft, and J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140(12), 3897–3909 (2015).
[Crossref]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmidt, C.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Schmitt, M.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Schreiner, A.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Seitz, W.

Shen, S. S.

Shen, Y.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Shi, L.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Silveira, E. S.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Sivankutty, S.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Snuderl, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Stallmach, A.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Sterry, W.

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Steuwe, C.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Stone, N.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

Tam, J.

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

Targoff, K.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Thrall, M. J.

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tu, H.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Tünnermann, A.

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Turchinovich, D.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Ul-Hasan, M.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

Uno, S.

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

Vallée, R.

Venneti, S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Villeneuve, A.

Vogler, N.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

Wadsworth, W. J.

Waldner, M. J.

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Wang, A. C.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Wang, H.

Wang, Z.

Wei, M.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Weinigel, M.

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Wenger, J.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Wilson, W. L.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Wise, F. W.

Wong, K. K.

Wong, S. T.

Wuttig, A.

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

Xie, X. S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref]

Xu, B.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Yamashita, S.

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

Yang, Y.

Ye, J.

You, S.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Zhang, L.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Zhao, Y.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Zheng, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Zhou, S.

Anal. Chem. (1)

C. M. Hartshorn, Y. J. Lee, C. H. Camp Jr, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85(17), 8102–8111 (2013).
[Crossref]

Analyst (4)

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: a clinical tool for cancer diagnostics,” Analyst 134(6), 1029–1045 (2009).
[Crossref]

I. W. Schie, C. Krafft, and J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140(12), 3897–3909 (2015).
[Crossref]

T. Meyer, M. Baumgartl, T. Gottschall, T. Pascher, A. Wuttig, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, O. Guntinas-Lichius, B. Dietzek, M. Schmitt, and J. Popp, “A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics,” Analyst 138(14), 4048–4057 (2013).
[Crossref]

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Biomed. Opt. Express (4)

BMC Cancer (1)

T. W. Bocklitz, F. S. Salah, N. Vogler, S. Heuke, O. Chernavskaia, C. Schmidt, M. J. Waldner, F. R. Greten, R. Bräuer, M. Schmitt, A. Stallmach, I. Petersen, and J. Popp, “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534–544 (2016).
[Crossref]

Br. J. Dermatol. (1)

S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp, “Multimodal mapping of human skin,” Br. J. Dermatol. 169(4), 794–803 (2013).
[Crossref]

Comput. Med. Imaging Graph. (1)

F. B. Legesse, A. Medyukhina, S. Heuke, and J. Popp, “Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer,” Comput. Med. Imaging Graph. 43, 36–43 (2015).
[Crossref]

J. Biomed. Opt. (1)

T. Meyer, N. Bergner, C. Krafft, D. Akimov, B. Dietzek, J. Popp, C. Bielecki, B. F. Romeike, R. Reichart, and R. Kalff, “Nonlinear microscopy, infrared, and raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref]

J. Biophotonics (1)

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophotonics 7(11-12), 906–913 (2014).
[Crossref]

J. Invest. Dermatol. (1)

Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, and C. L. Evans, “Longitudinal, 3d in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: normal function and response to cryotherapy,” J. Invest. Dermatol. 135(1), 39–44 (2015).
[Crossref]

Laser Phys. Lett. (1)

M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography,” Laser Phys. Lett. 11(5), 055601 (2014).
[Crossref]

Light: Sci. Appl. (1)

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10–18 (2018).
[Crossref]

Microsc. Res. Tech. (1)

H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, and K. König, “Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin,” Microsc. Res. Tech. 75(4), 492–498 (2012).
[Crossref]

Nat. Biomed. Eng. (1)

D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. Garton, and C. O. Maher et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1(2), 0027 (2017).
[Crossref]

Nat. Commun. (1)

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Nat. Photonics (2)

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref]

Neurophotonics (1)

D. T. DePaoli, N. Lapointe, Y. Messaddeq, M. Parent, and D. C. Côté, “Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system,” Neurophotonics 5(3), 035005 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Photochem. Photobiol. (1)

K. M. Hanson and C. J. Bardeen, “Application of nonlinear optical microscopy for imaging skin,” Photochem. Photobiol. 85(1), 33–44 (2009).
[Crossref]

Proc. Natl. Acad. Sci. (1)

C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. 102(46), 16807–16812 (2005).
[Crossref]

Proc. SPIE (1)

T. Gottschall, T. Meyer, C. Jauregui, F. Just, T. Eidam, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber optical parametric oscillator for bio-medical imaging applications,” Proc. SPIE 10083, 100831E (2017).
[Crossref]

Sci. Transl. Med. (1)

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref]

Science (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Vib. Spectrosc. (1)

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: Could high throughput vibrational spectroscopic screening improve drug development,” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

Other (5)

G. Agrawal, Applications of nonlinear fiber optics (Elsevier, 2001).

D. Churin, R. Olson, N. Peyghambarian, and K. Kieu, “High power, widely tunable synchronously pumped fiber-based optical parametric oscillator,” in 2016 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2016) pp. 1–2.

T. Nguyen, K. Kieu, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, “Widely tunable normal dispersion fiber optical parametric oscillator,” in CLEO: Science and Innovations, (Optical Society of America, 2014) pp. SM1O–7

E. Potma and S. Mukamel, Coherent Raman Scattering Microscopy (CRC Press, Taylor & Francis Group, 2013).

M. R. Hamblin, P. Avci, and G. K. Gupta, Imaging in Dermatology (Academic Press, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic experimental setup. SAM: saturable absorber mirror; Yb$^{3+}$: Yb-doped fiber; CFBG: chirped fiber Bragg grating; DC-Yb$^{3+}$: double-clad Yb-doped fiber; SMF: single-mode fiber; PCF: photonic-crystal fiber.
Fig. 2.
Fig. 2. (a) Measured intensity autocorrelation (IAC) traces of the pump and signal pulses. The shown FWHM of 7 ps stayed constant across the tuning range. (b) Exemplary measured spectrum of a signal pulse at 791.5 nm.
Fig. 3.
Fig. 3. (a) Spectral location of the maximum FWM gain for the signal pulses as a function of the pump wavelength. Left vertical axis shows the signal wavelength, right vertical axis shows the relative wavenumber between the signal and the pump pulses. (b) Repetition rates of the FOPO (blue line) and of the pump laser both with (black dash-dotted line) and without CFBG (red dashed line.
Fig. 4.
Fig. 4. Measured signal power across the tuning range.
Fig. 5.
Fig. 5. Results of the stress test of the light source placed on a laboratory cart. Lower panel shows the acceleration applied to the cart, grouped into impacts onto the cart and vibrations due to movements of the cart. Upper panel shows the simultaneously measured output signal power of the light source.
Fig. 6.
Fig. 6. Color-depth projections of 3D volumes of fresh ex vivo mouse ear tissue imaged with lipid contrast ($\Omega$ = 2845 cm$^{-1}$) CARS. Reference point of the depth color code bars at the bottom of each image is the skin surface at 0 $\mu$m. Volumes were consequently obtained with the fiber-based light source (a, c) and a reference light source (b, d). (a, b) Lipid-rich sebaceous glands. (c, d) Dermal structures from the sebaceous glands to adipocytes, and subcutaneous fat. The spectrally broadband excitation with the femtosecond reference source resulted in a higher overall brightness but lower image contrast due to the stronger non-resonant signal contribution in (b) and (d).
Fig. 7.
Fig. 7. Images of human sebaceous gland from 30 $\mu$m thin skin tissue sections. (a) CARS image obtained by tuning to 2845 cm$^{-1}$ (symmetric CH$_2$). (b) CARS image obtained by tuning to 2934 cm$^{-1}$ (asymmetric CH$_3$). (c) Merged two-color image from (a) and (b) revealing heterogeneous distributions of lipids (green/yellow) and proteins (orange/red).
Fig. 8.
Fig. 8. Images of a colloidal mixture of dDMSO and olive oil. (a) CARS image obtained by tuning to 2130 cm$^{-1}$ (symmetric CD). (b) CARS image obtained by tuning to 2845 cm$^{-1}$ (symmetric CH$_2$). (c) Merged two-color image from (a) and (b) revealing discrete distributions of lipids and deuterated DMSO.
Fig. 9.
Fig. 9. Images of selective wavelength tuning of FOPO between high wavenumber and silent region of Raman spectrum. (a) Merged two-color CARS image obtained by tuning to the 2130 cm$^{-1}$ vibration (symmetric CD, red) of deuterated DMSO and the 2845 cm$^{-1}$ vibration (symmetric CH$_2$, blue) of subcutaneous fat following the application of dDMSO to nude mouse ear tissue. (b) Merged two-color CARS image of ruxolitinib powder obtained by tuning to 2250 cm$^{-1}$ (CN stretching, yellow) and 2845 cm$^{-1}$ (symmetric CH$_2$, blue).