Abstract

We have developed a highly phase stable optical coherence tomography and vibrometry system that attaches directly to the accessory area of a surgical microscope common to both the otology clinic and operating room. Careful attention to minimizing sources of phase noise has enabled a system capable of measuring vibrations of the middle ear with a sensitivity of < 5 pm in an awake human patient. The system is shown to be capable of collecting a wide range of information on the morphology and function of the ear in live subjects, including frequency tuning curves below the hearing threshold, maps of tympanic membrane vibrational modes and thickness, and measures of distortion products due to the nonlinearities in the cochlear amplifier.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics

Dan MacDougall, Joshua Farrell, Jeremy Brown, Manohar Bance, and Robert Adamson
Biomed. Opt. Express 7(11) 4621-4635 (2016)

Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT

Jesung Park, Jeffrey T. Cheng, Daniel Ferguson, Gopi Maguluri, Ernest W. Chang, Caitlin Clancy, Daniel J. Lee, and Nicusor Iftimia
Biomed. Opt. Express 7(2) 238-250 (2016)

Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography

Antoine Ramier, Jeffrey Tao Cheng, Michael E. Ravicz, John J. Rosowski, and Seok-Hyun Yun
Biomed. Opt. Express 9(11) 5489-5502 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
    [Crossref]
  2. G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
    [Crossref]
  3. C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
    [Crossref]
  4. H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
    [Crossref]
  5. H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
    [Crossref]
  6. D. MacDougall, J. Farrell, J. Brown, M. Bance, and R. Adamson, “Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics,” Biomed. Opt. Express 7(11), 4621–4635 (2016).
    [Crossref]
  7. O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
    [Crossref]
  8. W. Kim, S. Kim, J. S. Oghalai, and B. E. Applegate, “Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window,” Opt. Lett. 43(9), 1966–1969 (2018).
    [Crossref]
  9. J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
    [Crossref]
  10. R. J. Roeser, M. Valente, and H. Hosford-Dunn, Audiology. Diagnosis (Thieme Medical Publishers, Inc., 2007).
  11. M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
    [Crossref]
  12. E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
    [Crossref]
  13. I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
    [Crossref]
  14. R. Derek Bradley and Gerhard, “Adaptive Thresholding using the Integral Image,” J. Graph. Tools 12(2), 13–21 (2007).
    [Crossref]
  15. R. T. Whitaker, “A Level-Set Approach to 3D Reconstruction from Range Data,” Int. J. Comput. Vis. 29(3), 203–231 (1998).
    [Crossref]
  16. Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
    [Crossref]
  17. S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
    [Crossref]
  18. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [Crossref]

2018 (2)

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

W. Kim, S. Kim, J. S. Oghalai, and B. E. Applegate, “Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window,” Opt. Lett. 43(9), 1966–1969 (2018).
[Crossref]

2017 (1)

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

2016 (3)

2015 (2)

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

2009 (1)

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

2008 (1)

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

2007 (2)

R. Derek Bradley and Gerhard, “Adaptive Thresholding using the Integral Image,” J. Graph. Tools 12(2), 13–21 (2007).
[Crossref]

E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
[Crossref]

2005 (1)

2001 (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
[Crossref]

1998 (1)

R. T. Whitaker, “A Level-Set Approach to 3D Reconstruction from Range Data,” Int. J. Comput. Vis. 29(3), 203–231 (1998).
[Crossref]

Adamson, R.

Aerts, J. R.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

Aganj, I.

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

Allardyce, B. J.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Applegate, B. E.

Atlas, M. D.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Bance, M.

Barton, J.

Boppart, S. A.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Bradu, A.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

Brezinski, M. E.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
[Crossref]

Brown, J.

Buytaert, J. A.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

Carbajal, E. F.

Carrasco-Zevallos, O. M.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Chaney, E. J.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Chang, E. W.

Chen, X.

Chen, Z. P.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Cheng, J. T.

Clancy, C.

Dalhoff, E.

E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
[Crossref]

Derek Bradley, R.

R. Derek Bradley and Gerhard, “Adaptive Thresholding using the Integral Image,” J. Graph. Tools 12(2), 13–21 (2007).
[Crossref]

Dilley, R. J.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Dirckx, J. J.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

Djalilian, H. R.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Eikelboom, R. H.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Farrell, J.

Ferguson, D.

Francis Kennedy, B.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Fujimoto, J. G.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
[Crossref]

Furlong, C.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref]

Gerhard,

R. Derek Bradley and Gerhard, “Adaptive Thresholding using the Integral Image,” J. Graph. Tools 12(2), 13–21 (2007).
[Crossref]

Guignard, J.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref]

Gummer, A. W.

E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
[Crossref]

Hosford-Dunn, H.

R. J. Roeser, M. Valente, and H. Hosford-Dunn, Audiology. Diagnosis (Thieme Medical Publishers, Inc., 2007).

Hubler, Z.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Iftimia, N.

Izatt, J. A.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Keller, B.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Khaleghi, M.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref]

Kim, S.

Kim, W.

Lee, D. J.

MacDougall, D.

Madsen, S. K.

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

Maguluri, G.

McCormick, D. T.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Monroy, G. L.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Nolan, R. M.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Novak, M. A.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Oghalai, J. S.

Pande, P.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Parikshak, N.

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

Park, J.

Pitris, C.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
[Crossref]

Podoleanu, A. G.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

Porter, R. G.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Ridgway, J.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Roeser, R. J.

R. J. Roeser, M. Valente, and H. Hosford-Dunn, Audiology. Diagnosis (Thieme Medical Publishers, Inc., 2007).

Rosowski, J. J.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref]

Santa Maria, P. L.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Sapiro, G.

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

Saunders, K. T.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
[Crossref]

Seider, M. I.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Sepehr, A.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Shelton, R. L.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Shemonski, N. D.

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Shen, L.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Spillman, D. R.

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

Stromski, S.

Tam, M.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Tan, H. E. I.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Thompson, P. M.

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

Toth, C. A.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Turcanu, D.

E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
[Crossref]

Valente, M.

R. J. Roeser, M. Valente, and H. Hosford-Dunn, Audiology. Diagnosis (Thieme Medical Publishers, Inc., 2007).

Van der Jeught, S.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

Viehland, C.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

Whitaker, R. T.

R. T. Whitaker, “A Level-Set Approach to 3D Reconstruction from Range Data,” Int. J. Comput. Vis. 29(3), 203–231 (1998).
[Crossref]

Wijesinghe, P.

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Wong, B. J. F.

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Zenner, H. P.

E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
[Crossref]

Arch. Otolaryngol., Head Neck Surg. (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography - A feasibility study,” Arch. Otolaryngol., Head Neck Surg. 127(6), 637–642 (2001).
[Crossref]

Biomed. Opt. Express (2)

Hum. Brain Mapp. (1)

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, “Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue,” Hum. Brain Mapp. 30(10), 3188–3199 (2009).
[Crossref]

Int. J. Comput. Vis. (1)

R. T. Whitaker, “A Level-Set Approach to 3D Reconstruction from Range Data,” Int. J. Comput. Vis. 29(3), 203–231 (1998).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Visual Sci. 57(9), OCT37 (2016).
[Crossref]

J. Assoc. Res. Otolaryngol. (1)

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref]

J. Biomed. Opt. (2)

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref]

G. L. Monroy, P. Pande, R. M. Nolan, R. L. Shelton, R. G. Porter, M. A. Novak, D. R. Spillman, E. J. Chaney, D. T. McCormick, and S. A. Boppart, “Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref]

J. Graph. Tools (1)

R. Derek Bradley and Gerhard, “Adaptive Thresholding using the Integral Image,” J. Graph. Tools 12(2), 13–21 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Otolaryngol.--Head Neck Surg. (1)

H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe, B. Francis Kennedy, B. J. Allardyce, R. H. Eikelboom, M. D. Atlas, and R. J. Dilley, “Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review,” Otolaryngol.--Head Neck Surg. 159(3), 424–438 (2018).
[Crossref]

Otology & Neurotology (1)

H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. P. Chen, and B. J. F. Wong, “Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo,” Otology & Neurotology 29(8), 1091–1094 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

E. Dalhoff, D. Turcanu, H. P. Zenner, and A. W. Gummer, “Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects,” Proc. Natl. Acad. Sci. U. S. A. 104(5), 1546–1551 (2007).
[Crossref]

Quant. Imaging Med. Surg. (1)

Z. Hubler, N. D. Shemonski, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography,” Quant. Imaging Med. Surg. 5, 69–77 (2015).
[Crossref]

Other (1)

R. J. Roeser, M. Valente, and H. Hosford-Dunn, Audiology. Diagnosis (Thieme Medical Publishers, Inc., 2007).

Supplementary Material (5)

NameDescription
» Visualization 1       Movie of the OCT volume image recorded just prior to the vibrational measurements. A yellow line in the visualization labels the chorda tympani nerve.
» Visualization 2       Movie showing a volume rendering of the TM vibration (left) and the corresponding time dependent amplitude map (right). The vibration was scaled by a factor of 6600 so that the vibrational pattern would be visible in the image.
» Visualization 3       Rotating volume OCT image with labels on relevant morphology.
» Visualization 4       Rotating volume image of the tympanic membrane associated with the thickness measurements.
» Visualization 5       Movie of 3-D thickness map.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic of fiber optic Mach-Zehnder OCT interferometer. Abbreviations: BPD, balanced photodiode, Aim, green aiming beam, circ, circulator, WDM, wavelength division multiplexor. (b) Schematic of bulk optics in reference and sample arm. Abbreviations: CL. Collimating lens, RP, right angle prism, M, mirror, trans. Stage, translation stage, DM, dichroic mirror, Obj., objective lens, MEMs, MEMs scan mirror, BEL, beam expander lens. (c) Photo of optical system shown schematically in (a) and (b). (d) 3-D rendering of sample arm optics from OpticStudio simulation. The focal lengths of the lens are given below each compound lens, where AC is achromat and PC is plano-convex. (c) Measured lateral point-spread function (PSF) along the X and Y-axes.
Fig. 2.
Fig. 2. (a) Leica M400E surgical microscope with OCT accessory attachment and ENT examination chair. (b) Close-up showing the OCT accessory mounted to the bottom side of the microscope. (c) Bottom view of OCT accessory. The bottom cover is threaded to match the sterile drapes (SD) commonly used to cover the microscope when used in surgery. (d) Close-up of ENT chair head rest showing the bite bar on the left used for high-phase sensitivity measurements. The speculum fixture is on the right. Both are attached to the chair with lockable articulating arms. (e) Close-up of speculum fixture showing the two earbuds used for introducing sound to the ear canal, the microphone for recording the stimulus sound, and a disposable speculum. (f) Mobile tower, housing the CPU, monitor, all electronics, laser system, and detector.
Fig. 3.
Fig. 3. (a) Cross-sectional image (B-scan) of the tympanic membrane in the left ear of a healthy volunteer, near the umbo. The green cross indicates the spatial position of the vibratory response in (b-d). (b) Vibratory response after 200 averages with the stimulus duration indicated in the legend. A 60 dB 4.5 kHz sound was presented to the ear canal using a custom speculum. (c) Mean and standard deviation over 100 Hz bins for the three shortest stimulus durations. (d) 50 ms stimulus showed the best performance considering motion artifact. Above 100 Hz the noise mean drops to less than 1 nm, leveling out at ∼10 pm above 2 kHz.
Fig. 4.
Fig. 4. (a) Cross-sectional image of the tympanic membrane. Green arrow indicates where the vibratory response was recorded. (b) Tuning curves over the 2-6 kHz, 10-70 dB SPL range. The * is the noise mean (µ) with error bars at ± standard deviation (std). The red error bar is µ+3std, i.e. the sensitivity to vibration. Any signals below this level are generally disregarded as too weak to consider.
Fig. 5.
Fig. 5. All images collected in vivo on the left ear of a healthy patient. (a) Photograph taken through the surgical microscope. The malleus and chorda tympani nerve are labeled and marked with dashed lines. The approximate field of view of the OCT images is indicated by the ellipse. (b) First frame from a movie (Visualization 1) of the OCT volume image recorded just prior to the vibrational measurements. The black dashed line indicates the relative position of the malleus. A yellow line in the visualization labels the chorda tympani nerve. The * and ** in (b), (c), and (d), mark corresponding points in the respective images. (c) Cross-sectional image from the volume showing the malleus, incus and wall of the ear canal (d) Vibrational amplitude map at the stimulus frequency (3.3 kHz) following 50 ms 65 dB SPL stimulus. (d) Dashed lines label the malleus and chorda tympani nerve as in (a). (e) Corresponding phase. (f,g) First frame of a movie (Visualization 2) showing a volume rendering of the TM vibration in (e) and the corresponding time dependent amplitude map in (f). The vibration was scaled by a factor of 6600 in (e) so that the vibrational pattern would be visible in the image.
Fig. 6.
Fig. 6. (a) Cross-sectional OCT images of the tympanic membrane (TM) at the umbo region of the malleus (a) and long process of the incus (c). The green arrow indicates where the displacement was measured in b) and d). b,d) Displacement (log10 scale) vs. frequency. The stimulus was 65 dB SPL pure tones at f1=4.59 kHz and f2=5.60 kHz. The stimulus duration was 50 ms with 400 trials. The average response is plotted. Noise floor was calculated in the 7-10 kHz range.
Fig. 7.
Fig. 7. (a) Volume rendering of middle ear in a healthy volunteer showing the tympanic membrane (TM), Chorda tympani nerve (CTN), incus (I), and stapes (S). This is the last frame of movie of the structures (Visualization 3). (b-d) Cross-sectional images from volume set showing the same.
Fig. 8.
Fig. 8. (a) Cartoon illustrating algorithm for finding TM thickness. (b) OCT cross-sectional image used to create the binary mask in (a). (c) Snapshot from a volume rendering of the OCT data oriented to match the orientation of the thickness map in (d). The black dashed line highlights the malleus. This placement is obvious from viewing the associated movie (Visualization 4). (d) Thickness map projected on the x,y plane. The thickness at the six labeled regions of interest are provided in table 1. (e) The true 3-D thickness map, rotated out of the x,y plane. See associated movie for various viewing angles (Visualization 5).
Fig. 9.
Fig. 9. (a) Median amplitude image generated from 495 sequentially acquired B-scans. The tympanic membrane is the bright structure at the top of the image. The cochlear promontory along with what appears to be the inner wall of the cochlea are at the bottom of the image. The scale bar is 1 mm. (c) Phase image highlighting the vasculature of the middle ear. (b) Overlay of the variance and median images showing how the large variance on the tympanic membrane aligns with the cutaneous (top) and mucosal (bottom) layers of the membrane. The variance is much lower in the central fibrous layer.

Metrics