Abstract

The purpose of this study is to evaluate whether a diffuse optical tomography breast imaging system (DOTBIS) can provide a comparable optical-based image index of mammographic breast density, an established biomarker of breast cancer risk. Oxyhemoglobin concentration (ctO2Hb) measured by DOTBIS was collected from 40 patients with stage II-III breast cancer. The tumor-free contralateral breast was used for this evaluation. We observed a moderate positive correlation between the patient’s mammogram density classification and ctO2Hb, rs = 0.486 (p = 0.001). In addition, significant reduction in ctO2Hb levels were noted during neoadjuvant chemotherapy treatment (p = 0.017). This observation indicates that ctO2Hb levels measured by DOTBIS could be a novel modifiable imaging biomarker of breast cancer risk and warrants further investigation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI)

Amir Y. Sajjadi, Steven J. Isakoff, Bin Deng, Bhawana Singh, Christy M. Wanyo, Qianqian Fang, Michelle C. Specht, Lidia Schapira, Beverly Moy, Aditya Bardia, David A. Boas, and Stefan A. Carp
Biomed. Opt. Express 8(2) 555-569 (2017)

Breast density quantification using structured-light-based diffuse optical tomography simulations

Jessica Ruiz, Farouk Nouizi, Jaedu Cho, Jie Zheng, Yifan Li, Jeon-Hor Chen, Min-Ying Su, and Gultekin Gulsen
Appl. Opt. 56(25) 7146-7157 (2017)

Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system

Stefan A. Carp, Amir Y. Sajjadi, Christy M. Wanyo, Qianqian Fang, Michelle C. Specht, Lidia Schapira, Beverly Moy, Aditya Bardia, David A. Boas, and Steven J. Isakoff
Biomed. Opt. Express 4(12) 2911-2924 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J. Clin. 69(1), 7–34 (2019).
    [Crossref] [PubMed]
  2. C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
    [Crossref] [PubMed]
  3. V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169 (2006).
    [Crossref] [PubMed]
  4. N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
    [Crossref] [PubMed]
  5. N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
    [Crossref] [PubMed]
  6. I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
    [Crossref] [PubMed]
  7. J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
    [Crossref] [PubMed]
  8. C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
    [Crossref] [PubMed]
  9. N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
    [Crossref] [PubMed]
  10. D. B. Kopans, “Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk,” Radiology 246(2), 348–353 (2008).
    [Crossref] [PubMed]
  11. P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
    [Crossref] [PubMed]
  12. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
    [Crossref] [PubMed]
  13. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
    [Crossref] [PubMed]
  14. T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
    [Crossref] [PubMed]
  15. P. E. Freer, “Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening,” Radiographics 35(2), 302–315 (2015).
    [Crossref] [PubMed]
  16. M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
    [Crossref] [PubMed]
  17. H. K. Kim, M. Flexman, D. J. Yamashiro, J. J. Kandel, and A. H. Hielscher, “PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer,” Biomed. Opt. Express 1(3), 812–824 (2010).
    [Crossref] [PubMed]
  18. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
    [Crossref] [PubMed]
  19. D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
    [Crossref] [PubMed]
  20. M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
    [Crossref] [PubMed]
  21. K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
    [Crossref] [PubMed]
  22. J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
    [Crossref] [PubMed]
  23. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
    [Crossref] [PubMed]
  24. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
    [Crossref] [PubMed]
  25. B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
    [Crossref] [PubMed]
  26. J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
    [Crossref] [PubMed]
  27. J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
    [Crossref] [PubMed]
  28. J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
    [Crossref] [PubMed]
  29. M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
    [Crossref] [PubMed]
  30. J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
    [Crossref] [PubMed]
  31. Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
    [Crossref] [PubMed]
  32. C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
    [Crossref] [PubMed]
  33. L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
    [Crossref] [PubMed]

2019 (1)

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J. Clin. 69(1), 7–34 (2019).
[Crossref] [PubMed]

2018 (1)

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

2017 (1)

2016 (1)

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

2015 (3)

K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. E. Freer, “Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening,” Radiographics 35(2), 302–315 (2015).
[Crossref] [PubMed]

2013 (3)

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

2012 (1)

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

2011 (2)

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

2010 (5)

H. K. Kim, M. Flexman, D. J. Yamashiro, J. J. Kandel, and A. H. Hielscher, “PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer,” Biomed. Opt. Express 1(3), 812–824 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

2008 (2)

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

D. B. Kopans, “Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk,” Radiology 246(2), 348–353 (2008).
[Crossref] [PubMed]

2007 (3)

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

2006 (4)

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169 (2006).
[Crossref] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

2004 (3)

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
[Crossref] [PubMed]

1997 (1)

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

1995 (2)

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Abbate, F.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Al Abdi, R.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

Bahri, S.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Balestreri, N.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Barbour, R. L.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

Beinart, C.

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Bernstein, J. L.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Bernstein, L.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Bjurstam, N.

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

Blackmore, K. M.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
[Crossref] [PubMed]

Bleich, A.

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Boas, D. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Bovbjerg, V. E.

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

Boverman, G.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Boyd, N. F.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Brandt, K. R.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

Bremnes, Y.

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

Brooks, D. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Brooks, J. D.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

Byng, J. W.

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Carballido-Gamio, J.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Carp, S. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Cassano, E.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Cerhan, J. R.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chan, H.-P.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Chandra, R.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Chang, C.-K.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Checka, C. M.

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

Chen, J.-H.

J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
[Crossref] [PubMed]

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Chen, L.-K.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Chen, W.-P.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chenevert, T.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Cheung, L. W.-K.

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

Chiarelli, A.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Cho, J.

Chun, J. E.

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

Cubeddu, R.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Czene, K.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Dehghani, H.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Desperito, E.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

dos Santos Silva, I.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169 (2006).
[Crossref] [PubMed]

dos-Santos-Silva, I.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Fan, B.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Fan, J.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Fang, Q.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Fishell, E.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Fishell, E. K.

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Flexman, M.

Flexman, M. L.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

Fong, C. J.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

Fredericksen, Z. S.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

Freer, P. E.

P. E. Freer, “Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening,” Radiographics 35(2), 302–315 (2015).
[Crossref] [PubMed]

Ghosh, K.

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

Gibbs, J.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Goodsitt, M. M.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Gram, I. T.

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

Grosenick, D.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Gulsen, G.

Guo, H.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Hadjiiski, L. M.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Hall, P.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Hartman, M.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Harvey, J. A.

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

Helvie, M. A.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Hershman, D. L.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

Hielscher, A. H.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

H. K. Kim, M. Flexman, D. J. Yamashiro, J. J. Kandel, and A. H. Hielscher, “PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer,” Biomed. Opt. Express 1(3), 812–824 (2010).
[Crossref] [PubMed]

Hislop, G.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Hsu, C.-C.

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Hsu, F.-T.

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Humphreys, K.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Hylton, N.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Janney, C.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

Jemal, A.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J. Clin. 69(1), 7–34 (2019).
[Crossref] [PubMed]

Jiang, S.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

John, E. M.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Jong, R.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
[Crossref] [PubMed]

Jong, R. A.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Kaaks, R.

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

Kandel, J. J.

Kao, J.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Kato, I.

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Kelemen, L. E.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

Khalil, M. A.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

Kim, H. K.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

H. K. Kim, M. Flexman, D. J. Yamashiro, J. J. Kandel, and A. H. Hielscher, “PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer,” Biomed. Opt. Express 1(3), 812–824 (2010).
[Crossref] [PubMed]

Kim, M.

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Klifa, C.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Knight, J. A.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
[Crossref] [PubMed]

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Kopans, D. B.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

D. B. Kopans, “Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk,” Radiology 246(2), 348–353 (2008).
[Crossref] [PubMed]

Kuo, C.-C.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Laprie, A.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Lee, J.

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

Lee, N. A.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Leproux, A.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Li, J.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Li, Y.

Liang, X.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Lilge, L.

K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
[Crossref] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
[Crossref] [PubMed]

Lin, M.

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Little, L. E.

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Lockwood, G. A.

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

LoRusso, A. P.

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

Lu, J.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Lynch, C. F.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Malone, K. E.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Martin, L. J.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Maskarinec, G.

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

Matlock, A.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

McCormack, V. A.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169 (2006).
[Crossref] [PubMed]

McLaren, C. E.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Mehta, R. S.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Menna, S.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Miller, A. B.

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Miller, E. L.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Miller, K. D.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J. Clin. 69(1), 7–34 (2019).
[Crossref] [PubMed]

Minkin, S.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Moore, R. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Nalcioglu, O.

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Newstead, G.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Nicholson, B. T.

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

Nie, K.

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Noh, J. J.

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

Nouizi, F.

Noworolski, S.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

O’Sullivan, T. D.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Pagano, I.

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

Pan, W.-F.

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

Pankratz, V. S.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

Paquerault, S.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Paulsen, K. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Petroni, G. R.

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

Pifferi, A.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Pogue, B. W.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Poplack, S. P.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Pruthi, S.

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

Quarto, G.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Reiner, A. S.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Rinaldi, S.

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

Rinneberg, H.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Roblyer, D.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Roubidoux, M. A.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Ruiz, J.

Rusinek, H.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Sahiner, B.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Sandberg, M. E.

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

Schnabel, F. R.

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

Selb, J.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Sellers, T. A.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

Shepherd, J.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Shih, H.-N.

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Siegel, R. L.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J. Clin. 69(1), 7–34 (2019).
[Crossref] [PubMed]

Simick, M. K.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
[Crossref] [PubMed]

Singer, C.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Smolkin, M.

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Spinelli, L.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Srinivasan, S.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Stanczyk, F. Z.

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

Stone, J.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Su, M.-Y.

J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
[Crossref] [PubMed]

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Su, S.

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Sun, L.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

Taroni, P.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Toniolo, P. G.

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

Toth, H.

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Tritchler, D. L.

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Tromberg, B. J.

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Ursin, G.

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

Vachon, C. M.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

van Gils, C. H.

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Walter, J.

K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
[Crossref] [PubMed]

Wang, A.

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

Wei, J.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Weinreb, J.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Wilmes, L.

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Wilson, B.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
[Crossref] [PubMed]

Woods, M.

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

Yaffe, M. J.

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Yamashiro, D. J.

Zheng, J.

Zhou, C.

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

Acad. Radiol. (1)

B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 1143–1149 (2006).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (2)

C. M. Checka, J. E. Chun, F. R. Schnabel, J. Lee, and H. Toth, “The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening,” AJR Am. J. Roentgenol. 198(3), W292 (2012).
[Crossref] [PubMed]

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. Singer, and G. Newstead, “Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging,” AJR Am. J. Roentgenol. 168(2), 501–506 (1997).
[Crossref] [PubMed]

Am. J. Epidemiol. (1)

L. E. Kelemen, V. S. Pankratz, T. A. Sellers, K. R. Brandt, A. Wang, C. Janney, Z. S. Fredericksen, J. R. Cerhan, and C. M. Vachon, “Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study,” Am. J. Epidemiol. 167(9), 1027–1036 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Breast (1)

J. J. Noh, G. Maskarinec, I. Pagano, L. W.-K. Cheung, and F. Z. Stanczyk, “Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women,” Breast 15(1), 20–28 (2006).
[Crossref] [PubMed]

Breast Cancer Res. (4)

J. A. Knight, K. M. Blackmore, J. Fan, K. E. Malone, E. M. John, C. F. Lynch, C. M. Vachon, L. Bernstein, J. D. Brooks, A. S. Reiner, X. Liang, M. Woods, and J. L. BernsteinWECARE Study Collaborative Group, “The association of mammographic density with risk of contralateral breast cancer and change in density with treatment in the WECARE study,” Breast Cancer Res. 20(1), 23 (2018).
[Crossref] [PubMed]

M. E. Sandberg, J. Li, P. Hall, M. Hartman, I. dos-Santos-Silva, K. Humphreys, and K. Czene, “Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study,” Breast Cancer Res. 15(4), R57 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J.-H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W.-P. Chen, A. E. Cerussi, M.-Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J. Clin. 69(1), 7–34 (2019).
[Crossref] [PubMed]

Cancer Causes Control (1)

I. Kato, C. Beinart, A. Bleich, S. Su, M. Kim, and P. G. Toniolo, “A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States),” Cancer Causes Control 6(5), 431–438 (1995).
[Crossref] [PubMed]

Cancer Epidemiol. Biomarkers Prev. (1)

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169 (2006).
[Crossref] [PubMed]

Int. J. Cancer (1)

Y. Bremnes, G. Ursin, N. Bjurstam, S. Rinaldi, R. Kaaks, and I. T. Gram, “Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women,” Int. J. Cancer 121(11), 2506–2511 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt. 9(4), 794–803 (2004).
[Crossref] [PubMed]

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt. 16(7), 076014 (2011).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

J. Natl. Cancer Inst. (1)

N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” J. Natl. Cancer Inst. 87(9), 670–675 (1995).
[Crossref] [PubMed]

Magn. Reson. Imaging (1)

C. Klifa, J. Carballido-Gamio, L. Wilmes, A. Laprie, J. Shepherd, J. Gibbs, B. Fan, S. Noworolski, and N. Hylton, “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magn. Reson. Imaging 28(1), 8–15 (2010).
[Crossref] [PubMed]

Med. Phys. (1)

J. Wei, H.-P. Chan, M. A. Helvie, M. A. Roubidoux, B. Sahiner, L. M. Hadjiiski, C. Zhou, S. Paquerault, T. Chenevert, and M. M. Goodsitt, “Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images,” Med. Phys. 31(4), 933–942 (2004).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic Density and the Risk and Detection of Breast Cancer,” N. Engl. J. Med. 356(3), 227–236 (2007).
[Crossref] [PubMed]

NMR Biomed. (1)

J.-H. Chen, W.-F. Pan, J. Kao, J. Lu, L.-K. Chen, C.-C. Kuo, C.-K. Chang, W.-P. Chen, C. E. McLaren, S. Bahri, R. S. Mehta, and M.-Y. Su, “Effect of taxane-based neoadjuvant chemotherapy on fibroglandular tissue volume and percent breast density in the contralateral normal breast evaluated by 3T MR,” NMR Biomed. 26(12), 1705–1713 (2013).
[Crossref] [PubMed]

PLoS One (2)

K. M. Blackmore, J. A. Knight, J. Walter, and L. Lilge, “The Association between Breast Tissue Optical Content and Mammographic Density in Pre- and Post-Menopausal Women,” PLoS One 10(1), e0115851 (2015).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[Crossref] [PubMed]

Radiographics (1)

P. E. Freer, “Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening,” Radiographics 35(2), 302–315 (2015).
[Crossref] [PubMed]

Radiology (3)

D. B. Kopans, “Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk,” Radiology 246(2), 348–353 (2008).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined Optical and X-ray Tomosynthesis Breast Imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

J.-H. Chen, K. Nie, S. Bahri, C.-C. Hsu, F.-T. Hsu, H.-N. Shih, M. Lin, O. Nalcioglu, and M.-Y. Su, “Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation,” Radiology 255(1), 44–52 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Left: photograph of the custom-built diffuse optical tomographic breast imaging system (DOTBIS). Right: patient placed in the probe for imaging. The patient interface consists of two sets of four rings that can be adjusted to provide customized setting for different breast cup sizes.
Fig. 2
Fig. 2 Corresponding mammogram (MMG) and DOTBIS image. MIP images (axial orientation) were acquired at baseline in the contralateral normal breast of 42-year-old women (BD I), 40-year-old women (BD II), a 36-year-old women (BD III) and a 46-year-old women (BD IV). Nipples were excluded.
Fig. 3
Fig. 3 Simple box plot of ctO2Hb (μM) in the contralateral breast at baseline for different mammogram (MMG) breast density groups (I = almost all fatty tissue, II = scattered areas of dense glandular and fibrous tissue, III = heterogeneously dense and IV = extremely dense). Group I and IV had only one patient each. There was a moderate positive correlation between ctO2Hb at baseline and breast density (rs = 0.486, p = 0.001).
Fig. 4
Fig. 4 Left: Grouped scatter plot for reduction comparison between ctO2Hb (μM) at baseline versus ctO2Hb before third NAC cycle (n = 35). Right: Grouped scatter plot for reduction comparison between ctO2Hb (μM) at baseline versus after NAC completion (n = 24).
Fig. 5
Fig. 5 Mean values of ctO2Hb levels across NAC therapy for the patients imaged at all the 3 time points (n = 18).
Fig. 6
Fig. 6 A linear regression fitting indicates a moderate negative correlation between baseline ctO2Hb and age (r = −0.439, p = 0.005). The scatterplot shows line of the best fit and its confidence and prediction interval.

Tables (4)

Tables Icon

Table 1 Subject demographics according to NAC regimen and its DOTBIS imaging availability.

Tables Icon

Table 2 Baseline ctTHb, ctO2Hb, ctHHb, StO2 and water percentage (mean ± standard deviation) for all the different BI-RADS classification and their specific Spearman’s correlation coefficient with breast density. Bold values indicate statistical significance at p < 0.05 level.

Tables Icon

Table 3 Baseline ctTHb, ctO2Hb, ctHHb, StO2 and water percentage (median) for all the different BI-RADS classification. Bold values indicate statistical significance at p < 0.05 level after running a Kruskal-Wallis H test to determine if there were differences in baseline DOTBIS-measured parameters between the four breast density groups.

Tables Icon

Table 4 ctTHb, ctO2Hb, ctHHb, StO2 and water percentage (mean ± standard deviation) at three different time points: baseline, after 2 cycles of taxol and at the end of NAC. Bold values indicate statistical significance at p < 0.05 level after running a paired-samples t-test to determine if there was a statistically significant mean decrease in the DOTBIS-measured features after 2 cycles of NAC and at the end of therapy.

Metrics