Abstract

Blood cell analysis is one of the standard clinical tests. Despite the widespread use of exogenous markers for blood cell quantification, label-free optical methods are still of high demand due to their possibility for in vivo application and signal specific to the biochemical state of the cell provided by native fluorophores. Here we report the results of blood cell characterization using label-free fluorescence imaging techniques and flow-cytometry. Autofluorescence parameters of different cell types – white blood cells, red blood cells, erythrophagocytic cells – are assessed and analyzed in terms of molecular heterogeneity and possibilities of differentiation between different cell types in vitro and in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry

Lior Golan, Daniella Yeheskely-Hayon, Limor Minai, Eldad J Dann, and Dvir Yelin
Biomed. Opt. Express 3(6) 1455-1464 (2012)

Label-free characterization of white blood cells by measuring 3D refractive index maps

Jonghee Yoon, Kyoohyun Kim, HyunJoo Park, Chulhee Choi, Seongsoo Jang, and YongKeun Park
Biomed. Opt. Express 6(10) 3865-3875 (2015)

Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging

Yan Zeng, Jin Xu, Dong Li, Li Li, Zilong Wen, and Jianan Y. Qu
Opt. Lett. 37(13) 2490-2492 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Sakata and T. Kuroda, “Method for classifying leukocytes by flow cytometry,” U.S. patent 5,296,378 (Sep. 18, 1994).
  2. V. V. Tuchin, A. A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry 79A(10), 737–745 (2011).
    [Crossref]
  3. D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
    [Crossref]
  4. S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
    [Crossref]
  5. S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
    [Crossref]
  6. C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
    [Crossref]
  7. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
    [Crossref]
  8. M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
    [Crossref]
  9. V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow,” J. Cell. Biochem. 97(5), 916–932 (2006).
    [Crossref]
  10. A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
    [Crossref]
  11. J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
    [Crossref]
  12. G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
    [Crossref]
  13. A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
    [Crossref]
  14. C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
    [Crossref]
  15. A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
    [Crossref]
  16. R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
    [Crossref]
  17. T. S. Blacker and M. R. Duchen, “Investigating mitochondrial redox state using NADH and NADPH autofluorescence,” Free Radical Biol. Med. 100, 53–65 (2016).
    [Crossref]
  18. J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
    [Crossref]
  19. W. Becker, “Fluorescence lifetime imaging–techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
    [Crossref]
  20. O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).
  21. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
    [Crossref]
  22. L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008).
  23. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).
  24. M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
    [Crossref]
  25. A. N. Mayeno, K. J. Hamann, and G. J. Gleich, “Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence,” J. Leukocyte Biol. 51(2), 172–175 (1992).
    [Crossref]
  26. I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
    [Crossref]
  27. N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
    [Crossref]
  28. J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
    [Crossref]
  29. E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
    [Crossref]
  30. H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
    [Crossref]
  31. V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32(3), 191–197 (1998).
    [Crossref]
  32. D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
    [Crossref]
  33. D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
    [Crossref]
  34. G. J. Weil and T. M. Chused, “Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry,” Blood 57(6), 1099–1104 (1981).
  35. Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
    [Crossref]
  36. W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2(1), 71–79 (2011).
    [Crossref]
  37. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science and Business Media, 2013).
  38. E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
    [Crossref]
  39. M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
    [Crossref]
  40. A. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
    [Crossref]
  41. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
    [Crossref]
  42. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
    [Crossref]
  43. A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
    [Crossref]
  44. J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
    [Crossref]
  45. F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
    [Crossref]
  46. P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
    [Crossref]
  47. A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
    [Crossref]
  48. I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
    [Crossref]
  49. U. Tripathy and R. P. Steer, “The photophysics of metalloporphyrins excited in their Soret and higher energy UV absorption bands,” J. Porphyrins Phthalocyanines 11(04), 228–243 (2007).
    [Crossref]
  50. D. Li, W. Zheng, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo,” Opt. Lett. 36(6), 834–836 (2011).
    [Crossref]
  51. E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
    [Crossref]
  52. M. Briglia, M. A. Rossi, and C. Faggio, “Eryptosis: ally or enemy,” Curr. Med. Chem. 24(9), 937–942 (2017).
    [Crossref]
  53. C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
    [Crossref]
  54. R. Gozzelino, V. Jeney, and M. P. Soares, “Mechanisms of cell protection by heme oxygenase-1,” Annu. Rev. Pharmacol. Toxicol. 50(1), 323–354 (2010).
    [Crossref]

2019 (2)

F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
[Crossref]

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

2018 (5)

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
[Crossref]

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

2017 (5)

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

M. Briglia, M. A. Rossi, and C. Faggio, “Eryptosis: ally or enemy,” Curr. Med. Chem. 24(9), 937–942 (2017).
[Crossref]

2016 (6)

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

T. S. Blacker and M. R. Duchen, “Investigating mitochondrial redox state using NADH and NADPH autofluorescence,” Free Radical Biol. Med. 100, 53–65 (2016).
[Crossref]

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
[Crossref]

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

2015 (3)

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
[Crossref]

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
[Crossref]

2014 (3)

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

A. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref]

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

2013 (1)

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

2012 (5)

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
[Crossref]

W. Becker, “Fluorescence lifetime imaging–techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref]

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

2011 (4)

W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2(1), 71–79 (2011).
[Crossref]

D. Li, W. Zheng, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo,” Opt. Lett. 36(6), 834–836 (2011).
[Crossref]

V. V. Tuchin, A. A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry 79A(10), 737–745 (2011).
[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

2010 (2)

2008 (2)

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
[Crossref]

L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008).

2007 (2)

U. Tripathy and R. P. Steer, “The photophysics of metalloporphyrins excited in their Soret and higher energy UV absorption bands,” J. Porphyrins Phthalocyanines 11(04), 228–243 (2007).
[Crossref]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

2006 (2)

Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
[Crossref]

V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow,” J. Cell. Biochem. 97(5), 916–932 (2006).
[Crossref]

2002 (1)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref]

2001 (1)

S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
[Crossref]

2000 (1)

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

1998 (1)

V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32(3), 191–197 (1998).
[Crossref]

1997 (1)

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

1996 (1)

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

1995 (1)

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

1992 (1)

A. N. Mayeno, K. J. Hamann, and G. J. Gleich, “Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence,” J. Leukocyte Biol. 51(2), 172–175 (1992).
[Crossref]

1981 (1)

G. J. Weil and T. M. Chused, “Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry,” Blood 57(6), 1099–1104 (1981).

Agati, G.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

Aguirre-Ghiso, J.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Alcala, S.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Alfonso-García, A.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
[Crossref]

Alturkistany, F.

F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
[Crossref]

Aminoff, D.

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

Anderson, R. R.

S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
[Crossref]

Atiakshin, D.

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

Balic, A.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Baranska, M.

J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
[Crossref]

Baskurt, O. K.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Bauer, M.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Becker, W.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

W. Becker, “Fluorescence lifetime imaging–techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref]

Berlovskaya, E.

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

Bernabei, P. A.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Blacker, T. S.

T. S. Blacker and M. R. Duchen, “Investigating mitochondrial redox state using NADH and NADPH autofluorescence,” Free Radical Biol. Med. 100, 53–65 (2016).
[Crossref]

Blondel, M.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Bob, A.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Bocklitz, T.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Boecker, W.

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

Bottiroli, G.

A. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref]

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Bourquard, A.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Boynard, M.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Bratosin, D.

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

Briglia, M.

M. Briglia, M. A. Rossi, and C. Faggio, “Eryptosis: ally or enemy,” Curr. Med. Chem. 24(9), 937–942 (2017).
[Crossref]

Brucher, M.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Buchwalow, I.

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

Butterworth, I.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Bystrova, A. S.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

Caiolfa, V. R.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
[Crossref]

Cannon, T. M.

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

Canonne-Hergaux, F.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Caporale, R.

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Castracane, J.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Castro-González, C.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Cerrato, C.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Chen, Y.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Chen, Y. C.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Cherkasova, O. P.

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

Choi, C.

Chused, T. M.

G. J. Weil and T. M. Chused, “Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry,” Blood 57(6), 1099–1104 (1981).

Cinco, R.

R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
[Crossref]

Cioffi, M.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Clausell-Tormos, J.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Coffey, R. J.

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

Cokelet, G. C.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Condeelis, J.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Connes, P.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Cooke, B. M.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Côté, D.

Cournapeau, D.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Croce, A.

A. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref]

Croce, A. C.

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Dann, E. J.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Darvin, M. E.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

Datta, R.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
[Crossref]

de Back, D. Z.

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

De Marcos, S.

J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
[Crossref]

Del Rio, C.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Delaby, C.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Desjardins, M.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Digman, M. A.

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
[Crossref]

Dorado, J.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Dubourg, V.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Duchen, M. R.

T. S. Blacker and M. R. Duchen, “Investigating mitochondrial redox state using NADH and NADPH autofluorescence,” Free Radical Biol. Med. 100, 53–65 (2016).
[Crossref]

Duchesnay, E.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Dudenkova, V. V.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

Dybas, J.

J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
[Crossref]

Eickhoff, J.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Eliceiri, K. W.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Entenberg, D.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Erkan, M.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Fadeev, V.

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

Fadeev, V. V.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

Faggio, C.

M. Briglia, M. A. Rossi, and C. Faggio, “Eryptosis: ally or enemy,” Curr. Med. Chem. 24(9), 937–942 (2017).
[Crossref]

Ferreri, C.

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

Ferrini, P. R.

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Flanagan, L. A.

C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
[Crossref]

Fluhr, J. W.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Foerster, M.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Forconi, S.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Fujimoto, H.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

Fusi, F.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

Galanzha, E. I.

V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow,” J. Cell. Biochem. 97(5), 916–932 (2006).
[Crossref]

Galbán, J.

J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
[Crossref]

Garcia-Leis, A.

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Gleich, G. J.

A. N. Mayeno, K. J. Hamann, and G. J. Gleich, “Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence,” J. Leukocyte Biol. 51(2), 172–175 (1992).
[Crossref]

Golan, L.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Gonzalez, S.

S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
[Crossref]

Gozzelino, R.

R. Gozzelino, V. Jeney, and M. P. Soares, “Mechanisms of cell protection by heme oxygenase-1,” Annu. Rev. Pharmacol. Toxicol. 50(1), 323–354 (2010).
[Crossref]

Gramfort, A.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Gratton, E.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
[Crossref]

C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
[Crossref]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
[Crossref]

Gray, M. L.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Grisel, O.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Grosicki, M.

J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
[Crossref]

Gurfinkel, Y. I.

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

Hamaguchi, Y.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

Hamann, K. J.

A. N. Mayeno, K. J. Hamann, and G. J. Gleich, “Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence,” J. Leukocyte Biol. 51(2), 172–175 (1992).
[Crossref]

Hardeman, M. R.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Heeschen, C.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref]

Hidalgo, M.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Higginbotham, J. N.

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

Hinton, G.

L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008).

Hochberg, E. P.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Houston, J. P.

F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
[Crossref]

Houston, K. D.

F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
[Crossref]

Houwen, B.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

Hsieh, C. H.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Hsu, S. C.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Htun, N. M.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Huang, A. L.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref]

Huang, S. H.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Humala, K.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Ichiyama, S.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

Inman, D. R.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Jang, S.

Jeney, V.

R. Gozzelino, V. Jeney, and M. P. Soares, “Mechanisms of cell protection by heme oxygenase-1,” Annu. Rev. Pharmacol. Toxicol. 50(1), 323–354 (2010).
[Crossref]

Jung, F.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Kalinina, S.

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

Keely, P. J.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Kiehntopf, M.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Kim, K.

Kleeff, J.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Kostova, E. B.

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

Kuroda, T.

T. Sakata and T. Kuroda, “Method for classifying leukocytes by flow cytometry,” U.S. patent 5,296,378 (Sep. 18, 1994).

Lademann, J.

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science and Business Media, 2013).

Landini, S.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

Lange-Asschenfeldt, B.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Lange-Asschenfeldt, S.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Ledesma-Carbayo, M. J.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Lee, A. P.

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

Lee, D. H.

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

Lee, E. S.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Li, C.

Li, D.

Li, X.

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

Liao, F.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Lim, B.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Lin, C. P.

Lin, J. W.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Liu, T. M.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Liu, W. F.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

Lonardo, E.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Luo, Y.

Luu, T. U.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

Ma, N.

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

Maghzal, G. J.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Marzec, K. M.

J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
[Crossref]

Marzetti, C.

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

Mayeno, A. N.

A. N. Mayeno, K. J. Hamann, and G. J. Gleich, “Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence,” J. Leukocyte Biol. 51(2), 172–175 (1992).
[Crossref]

Mazurier, J.

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

Mazzinghi, P.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

Megias, D.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Meiselman, H. J.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Melchiorre, M.

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

Meleshina, A. V.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

Mendez, G.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Michel, V.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Minai, L.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Miranda-Lorenzo, I.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Monici, M.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Montreuil, J.

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

Nash, G.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Navarro, J.

J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
[Crossref]

Nemeth, N.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Neu, B.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Neugebauer, U.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Neukammer, J.

V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32(3), 191–197 (1998).
[Crossref]

Nichani, K.

F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
[Crossref]

Nourse, J. L.

C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
[Crossref]

Omelyanenko, N. P.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

Ost, V.

V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32(3), 191–197 (1998).
[Crossref]

Pablo-Trinidad, A.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Padera, T. P.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Park, H.

Park, Y.

Passos, A.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Pastila, R. K.

Pedregosa, F.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Perrot, M.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Pilard, N.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Pitsillides, C.

Ponik, S. M.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Popp, J.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Potma, E. O.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

Pouzet, C.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Pratesi, R.

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

Prettenhofer, P.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Priezzhev, A. V.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

Puoris’haag, M.

Qu, J. Y.

Rajadhyaksha, M.

S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
[Crossref]

Ramanujam, N.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Ramoji, A.

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Riching, K. M.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Rinneberg, H.

V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32(3), 191–197 (1998).
[Crossref]

Rodionov, S. A.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

Roewert-Huber, H.-J.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Rondeau, C.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Rossi, M. A.

M. Briglia, M. A. Rossi, and C. Faggio, “Eryptosis: ally or enemy,” Curr. Med. Chem. 24(9), 937–942 (2017).
[Crossref]

Rueck, A.

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

Runnels, J. M.

Sackstein, R.

S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
[Crossref]

Sainz, B.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Sakata, T.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

T. Sakata and T. Kuroda, “Method for classifying leukocytes by flow cytometry,” U.S. patent 5,296,378 (Sep. 18, 1994).

Samoilova, V.

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

Sánchez-Ferro, Á.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Sandhagen, B.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Sanz-Vicente, I.

J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
[Crossref]

Scarpa, A.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Schaefer, P. M.

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

Schiller, T.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Serrano, A. G.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Shah, A. T.

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

Shcheslavskiy, V. I.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

Shiga, S.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

Shin, S.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Shirmanova, M. V.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

Shirshin, E. A.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

Skala, M. C.

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Slomianny, C.

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

Smith, T. D.

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

Soares, M. P.

R. Gozzelino, V. Jeney, and M. P. Soares, “Mechanisms of cell protection by heme oxygenase-1,” Annu. Rev. Pharmacol. Toxicol. 50(1), 323–354 (2010).
[Crossref]

Steer, R. P.

U. Tripathy and R. P. Steer, “The photophysics of metalloporphyrins excited in their Soret and higher energy UV absorption bands,” J. Porphyrins Phthalocyanines 11(04), 228–243 (2007).
[Crossref]

Stocker, R.

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Stockfleth, E.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Stringari, C.

C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
[Crossref]

Szulczewski, J. M.

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

Tárnok, A. A.

V. V. Tuchin, A. A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry 79A(10), 737–745 (2011).
[Crossref]

Terhorst, D.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Thirion, B.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Thurston, G.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Tiemann, M.

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

Tikhonova, T.

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

Tohyama, K.

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

Torreggianim, A.

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

Tripathy, U.

U. Tripathy and R. P. Steer, “The photophysics of metalloporphyrins excited in their Soret and higher energy UV absorption bands,” J. Porphyrins Phthalocyanines 11(04), 228–243 (2007).
[Crossref]

Tuchin, V. V.

V. V. Tuchin, A. A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry 79A(10), 737–745 (2011).
[Crossref]

V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow,” J. Cell. Biochem. 97(5), 916–932 (2006).
[Crossref]

Tucker-Schwartz, J. M.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Ulrich, M.

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

Urdiola, M. F.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Vakoc, B. J.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

Valles, B.

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

van Bruggen, R.

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

van den Berg, T. K.

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

van der Maaten, L.

L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008).

van Kraaij, M.

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

Vanderplas, J.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Varoquaux, G.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

Verebes, G. S.

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

von Arnim, C. A.

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

von Einem, B.

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

Wang, T. D.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Wautier, J. L.

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Webb, W. W.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref]

Weil, G. J.

G. J. Weil and T. M. Chused, “Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry,” Blood 57(6), 1099–1104 (1981).

Weiss, R.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

White, J. G.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Willemetz, A.

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

Winer, M. M.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Wu, C. H.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Wu, H. T.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Wu, Y.

Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
[Crossref]

Wu, Y. M.

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

Yakimov, B. P.

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

Yeheskely-Hayon, D.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Yelin, D.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Yoon, J.

Zagaynova, E. V.

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

Zagorac, S.

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Zamai, M.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
[Crossref]

Zeidan, A.

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

Zeng, Y.

Zharov, V. P.

V. V. Tuchin, A. A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry 79A(10), 737–745 (2011).
[Crossref]

V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow,” J. Cell. Biochem. 97(5), 916–932 (2006).
[Crossref]

Zheng, W.

Anal. Chem. (1)

A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem. 84(12), 5335–5342 (2012).
[Crossref]

Analyst (1)

J. Dybas, M. Grosicki, M. Baranska, and K. M. Marzec, “Raman imaging of heme metabolism in situ in macrophages and Kupffer cells,” Analyst 143(14), 3489–3498 (2018).
[Crossref]

Annu. Rev. Pharmacol. Toxicol. (1)

R. Gozzelino, V. Jeney, and M. P. Soares, “Mechanisms of cell protection by heme oxygenase-1,” Annu. Rev. Pharmacol. Toxicol. 50(1), 323–354 (2010).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (2)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).
[Crossref]

Blood (1)

G. J. Weil and T. M. Chused, “Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry,” Blood 57(6), 1099–1104 (1981).

Curr. Med. Chem. (1)

M. Briglia, M. A. Rossi, and C. Faggio, “Eryptosis: ally or enemy,” Curr. Med. Chem. 24(9), 937–942 (2017).
[Crossref]

Cytometry (6)

F. Alturkistany, K. Nichani, K. D. Houston, and J. P. Houston, “Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry,” Cytometry 95(1), 70–79 (2019).
[Crossref]

P. M. Schaefer, S. Kalinina, A. Rueck, C. A. von Arnim, and B. von Einem, “NADH Autofluorescence — A Marker on its Way to Boost Bioenergetic Research,” Cytometry 95(1), 34–46 (2019).
[Crossref]

V. V. Tuchin, A. A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry 79A(10), 737–745 (2011).
[Crossref]

H. Fujimoto, T. Sakata, Y. Hamaguchi, S. Shiga, K. Tohyama, S. Ichiyama, and B. Houwen, “Flow cytometric method for enumeration and classification of reactive immature granulocyte populations,” Cytometry 42(6), 371–378 (2000).
[Crossref]

V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32(3), 191–197 (1998).
[Crossref]

D. Bratosin, J. Mazurier, C. Slomianny, D. Aminoff, and J. Montreuil, “Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages,” Cytometry 30(5), 269–274 (1997).
[Crossref]

Eur. J. Histochem. (1)

A. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref]

Free Radical Biol. Med. (1)

T. S. Blacker and M. R. Duchen, “Investigating mitochondrial redox state using NADH and NADPH autofluorescence,” Free Radical Biol. Med. 100, 53–65 (2016).
[Crossref]

Front. Physiol. (1)

D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Front. Physiol. 5, 9 (2014).
[Crossref]

Histochem. Cell Biol. (1)

I. Buchwalow, D. Atiakshin, V. Samoilova, W. Boecker, and M. Tiemann, “Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma,” Histochem. Cell Biol. 149(2), 169–177 (2018).
[Crossref]

J. Biomed. Opt. (4)

Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
[Crossref]

S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt. 17(7), 0760161 (2012).
[Crossref]

E. A. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” J. Biomed. Opt. 20(5), 051033 (2015).
[Crossref]

A. Alfonso-García, T. D. Smith, R. Datta, T. U. Luu, E. Gratton, E. O. Potma, and W. F. Liu, “Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 21(4), 046005 (2016).
[Crossref]

J. Biophotonics (2)

A. T. Shah, T. M. Cannon, J. N. Higginbotham, R. J. Coffey, and M. C. Skala, “Autofluorescence flow sorting of breast cancer cell metabolism,” J. Biophotonics 10(8), 1026–1033 (2017).
[Crossref]

G. S. Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, and A. Torreggianim, “Hyperspectral enhanced dark field microscopy for imaging blood cells,” J. Biophotonics 6(11-12), 960–967 (2013).
[Crossref]

J. Cell. Biochem. (1)

V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow,” J. Cell. Biochem. 97(5), 916–932 (2006).
[Crossref]

J. Invest. Dermatol. (1)

S. Gonzalez, R. Sackstein, R. R. Anderson, and M. Rajadhyaksha, “Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy,” J. Invest. Dermatol. 117(2), 384–386 (2001).
[Crossref]

J. Leukocyte Biol. (1)

A. N. Mayeno, K. J. Hamann, and G. J. Gleich, “Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence,” J. Leukocyte Biol. 51(2), 172–175 (1992).
[Crossref]

J. Mach. Learn. Res. (2)

L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011).

J. Microsc. (1)

W. Becker, “Fluorescence lifetime imaging–techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref]

J. Photochem. Photobiol., B (1)

M. Monici, R. Pratesi, P. A. Bernabei, R. Caporale, P. R. Ferrini, A. C. Croce, and G. Bottiroli, “Natural fluorescence of white blood cells: spectroscopic and imaging study,” J. Photochem. Photobiol., B 30(1), 29–37 (1995).
[Crossref]

J. Porphyrins Phthalocyanines (1)

U. Tripathy and R. P. Steer, “The photophysics of metalloporphyrins excited in their Soret and higher energy UV absorption bands,” J. Porphyrins Phthalocyanines 11(04), 228–243 (2007).
[Crossref]

Lab Chip (1)

D. H. Lee, X. Li, N. Ma, M. A. Digman, and A. P. Lee, “Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy,” Lab Chip 18(9), 1349–1358 (2018).
[Crossref]

Laser Phys. Lett. (1)

E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Phys. Lett. 15(7), 075604 (2018).
[Crossref]

Methods Appl. Fluoresc. (1)

J. Galbán, I. Sanz-Vicente, J. Navarro, and S. De Marcos, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4(4), 042005 (2016).
[Crossref]

Nat. Commun. (1)

N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, and R. Stocker, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 1–16 (2017).
[Crossref]

Nat. Methods (1)

I. Miranda-Lorenzo, J. Dorado, E. Lonardo, S. Alcala, A. G. Serrano, J. Clausell-Tormos, M. Cioffi, D. Megias, S. Zagorac, A. Balic, M. Hidalgo, M. Erkan, J. Kleeff, A. Scarpa, B. Sainz, and C. Heeschen, “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nat. Methods 11(11), 1161–1169 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

PLoS One (2)

C. Delaby, C. Rondeau, C. Pouzet, A. Willemetz, N. Pilard, M. Desjardins, and F. Canonne-Hergaux, “Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis,” PLoS One 7(7), e42199 (2012).
[Crossref]

C. Stringari, J. L. Nourse, L. A. Flanagan, and E. Gratton, “Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential,” PLoS One 7(11), e48014 (2012).
[Crossref]

Proc. Natl. Acad. Sci. (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. 104(49), 19494–19499 (2007).
[Crossref]

Proc. SPIE (1)

M. Monici, G. Agati, P. Mazzinghi, F. Fusi, P. A. Bernabei, S. Landini, and R. Pratesi, “Image analysis of cell natural fluorescence: diagnostic applications in haematology,” Proc. SPIE 2928, 180–187 (1996).
[Crossref]

Sci. Rep. (7)

A. V. Meleshina, V. V. Dudenkova, M. V. Shirmanova, V. I. Shcheslavskiy, W. Becker, A. S. Bystrova, and E. V. Zagaynova, “Probing metabolic states of differentiating stem cells using two-photon FLIM,” Sci. Rep. 6(1), 21853 (2016).
[Crossref]

R. Datta, A. Alfonso-García, R. Cinco, and E. Gratton, “Fluorescence lifetime imaging of endogenous biomarker of oxidative stress,” Sci. Rep. 5(1), 9848 (2015).
[Crossref]

J. M. Szulczewski, D. R. Inman, D. Entenberg, S. M. Ponik, J. Aguirre-Ghiso, J. Castracane, J. Condeelis, K. W. Eliceiri, and P. J. Keely, “In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging,” Sci. Rep. 6(1), 25086 (2016).
[Crossref]

A. Bourquard, A. Pablo-Trinidad, I. Butterworth, Á. Sánchez-Ferro, C. Cerrato, K. Humala, M. F. Urdiola, C. Del Rio, B. Valles, J. M. Tucker-Schwartz, E. S. Lee, B. J. Vakoc, T. P. Padera, M. J. Ledesma-Carbayo, Y. Chen, E. P. Hochberg, M. L. Gray, and C. Castro-González, “Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation,” Sci. Rep. 8(1), 5301 (2018).
[Crossref]

C. H. Wu, T. D. Wang, C. H. Hsieh, S. H. Huang, J. W. Lin, S. C. Hsu, H. T. Wu, Y. M. Wu, and T. M. Liu, “Imaging cytometry of human leukocytes with third harmonic generation microscopy,” Sci. Rep. 6(1), 37210 (2016).
[Crossref]

M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, and D. Yelin, “In vivo noninvasive microscopy of human leucocytes,” Sci. Rep. 7(1), 13031 (2017).
[Crossref]

E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Sci. Rep. 7(1), 1171 (2017).
[Crossref]

Other (3)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science and Business Media, 2013).

T. Sakata and T. Kuroda, “Method for classifying leukocytes by flow cytometry,” U.S. patent 5,296,378 (Sep. 18, 1994).

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Autofluorescence confocal imaging of a) neutrophil, b) eosinophil, c) erythrophagocytic cell. (a1), (b1), (c1) correspond to DIC microscopy. (a2), (b2), (c2) represent fluorescence imaging at 488 nm excitation and 525(50) nm registration (“green” channel). (a3), (b3), (c3) represent fluorescence imaging at 638 nm excitation and 700(75) nm registration (“red” channel). (a4), (b4), (c4) represent the merged images of green and red channels, where the yellow color is due to overlay of the merged signals in different spectral channels.
Fig. 2.
Fig. 2. (a) Imaging of cells in transmission and in epifluorescence mode in DAPI, FITC, TxRed channels; cells’ ROIs were selected on the bright field image and applied to epifluorescence images. Scale bar is equal to 20 µm. (b) Average fluorescence intensity for different cell types. The number of cells used to calculate mean and STD error was 346, 96, 19 and 10 for neutrophils, lymphocytes, eosinophils and EryPC, respectively. (c) Visualization of fluorescent features of provided by the t-SNE algorithm. Clustering of different cell types is observed; the inset in the lower right corner shows enlarged image of eosinophils and EryPC separation.
Fig. 3.
Fig. 3. (a) The side (SSC)/forward (FSC) scattering diagram for a leukoconcentrate, where the regions corresponding to different blood cells are marked. (b) The SSC-405/SSC-488 scattering diagram for leukoconcentrate and whole blood used to select RBC in the SSC/FSC diagram. (c) Distribution of fluorescence intensity in different spectral channels for four blood cell types.
Fig. 4.
Fig. 4. Separation between different blood cells based solely on their autofluorescence signal obtained as a result of flow cytometry data processing using the t-SNE algorithm. We note that the scattering signals (FSC and SSC) were not considered when performing clustering of cells.
Fig. 5.
Fig. 5. A gating strategy to detect erythrophagocytes and eosinophils by forward scattering and red autofluorescence ((a) and (d)) and using AF solely AF ((b),(e);(c),(f)). (a),(b),(c) represent 2D diagrams for autologous leukoconcentrates; (d),(e),(f) – leukoconcentrates with addition of RBC from another donor.
Fig. 6.
Fig. 6. (a) FLIM of a leukoconcentrate sample, color-coded according to the mean fluorescence lifetime (τmean) value. (b) Representative fluorescence decay curves for RBC (red), blood plasma (cyan), eosinophils (green) and neutrophils (blue) and their fits to the biexponential decay law. Distribution of (c) τmean and (d) integral intensity for RBC, blood plasma, eosinophils, erythrophagocytic cells and neutrophils.
Fig. 7.
Fig. 7. (a) FLIM of WBC subtypes, RBC and blood plasma represented in the form of phasor plot. (b) Clustering of objects using the K-means (K = 5) algorithm on the phasor plot. (c) The initial image (Fig. 6(a)) colored corresponding to the cluster colors. Scale bar is equal to 15 µm.
Fig. 8.
Fig. 8. Assessment of the molecular heterogeneity of neutrophils based on the analysis of phasor plot. Point colors correspond to different fluorescence lifetime values (from less than 1.2 (red) to 1.4 ns (blue), as shown on the scale bar), point sizes correspond to fluorescence lifetimes heterogeneity for single cells (scale bar). The small blue dots correspond to calculated phasor values for the different pixels of the FLIM image, while large dots correspond to the mean phasor values for the pixels that belong to single cells.

Tables (2)

Tables Icon

Table 1. Optical methods for label-free in vivo and in vitro imaging of WBC

Tables Icon

Table 2. Fluorescence emission parameters for different blood cells and blood plasma

Metrics