Abstract

We describe a psychophysical method and a simple setup – an autorefractor with a Scheiner disc, sequentially illuminated with red and blue lights – for the clinical assessment of the longitudinal chromatic aberration (LCA) in phakic and pseudophakic patients. This method applies to the unaccommodated eye, even in the presence of positive or negative refractive errors and astigmatism. It measures the chromatic difference of refraction as an estimate of LCA. We built a proof of concept from inexpensive and off-the-shelf optomechanical components with which we obtained the preliminary clinical results presented in the paper. We considered one control group of phakic patients and three groups of pseudophakic patients with monofocal implants of different designs and materials. The results, satisfactory and consistent with those reported by other researchers in related works, demonstrate the method and system feasibility.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach
Opt. Express 14(17) 7757-7775 (2006)

Advances and challenges of intraocular lens design [Invited]

Lan Zeng and Fengzhou Fang
Appl. Opt. 57(25) 7363-7376 (2018)

Full 3-D OCT-based pseudophakic custom computer eye model

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos
Biomed. Opt. Express 7(3) 1074-1088 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref] [PubMed]
  2. R. Navarro, “The optical design of the human eye: a critical review,” J. Optom. 2(1), 3–18 (2009).
    [Crossref]
  3. R. Navarro, “Letter to the editor,” J. Optom. 2, 163–164 (2009).
  4. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
    [Crossref]
  5. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
    [Crossref] [PubMed]
  6. C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
    [Crossref] [PubMed]
  7. M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
    [Crossref] [PubMed]
  8. N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
    [Crossref] [PubMed]
  9. H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
    [Crossref] [PubMed]
  10. M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
    [Crossref] [PubMed]
  11. G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
    [Crossref] [PubMed]
  12. P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
    [Crossref] [PubMed]
  13. M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
    [Crossref] [PubMed]
  14. D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
    [PubMed]
  15. R. B. Rabbetts, Bennett and Rabbett's Clinical Visual Optics, 4e (Butterworth‐Heinemann Elsevier, 2007).
  16. Th. Young, “On the mechanism of the eye,” Philosophical Transactions of the Royal Society of London, 91(Part I) (1801), pp. 23–88.
  17. D. A. Atchison and W. N. Charman, “Thomas Young's contribution to visual optics: The Bakerian lecture ‘On the mechanism of the eye’,” Journal of Vision 10(12), 1 (2010).
    [Crossref]
  18. D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65(2), 99–107 (1988).
    [Crossref] [PubMed]
  19. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth‐Heinemann, 2000).
  20. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
    [Crossref] [PubMed]
  21. https://www.thorlabs.com .
  22. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  23. M. Nakajima, T. Hiraoka, Y. Hirohara, T. Oshika, and T. Mihashi, “Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared,” Biomed. Opt. Express 6(7), 2676–2694 (2015).
    [Crossref] [PubMed]
  24. M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
    [Crossref] [PubMed]
  25. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [Crossref] [PubMed]
  26. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  27. D. A. Atchison, G. Smith, and M. D. Waterworth, “Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye,” Optom. Vis. Sci. 70(9), 716–722 (1993).
    [Crossref] [PubMed]

2018 (1)

G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
[Crossref] [PubMed]

2017 (2)

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
[Crossref] [PubMed]

2016 (2)

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (3)

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

2013 (1)

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

2012 (1)

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

R. Navarro, “The optical design of the human eye: a critical review,” J. Optom. 2(1), 3–18 (2009).
[Crossref]

R. Navarro, “Letter to the editor,” J. Optom. 2, 163–164 (2009).

2007 (1)

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

2005 (1)

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

1993 (1)

D. A. Atchison, G. Smith, and M. D. Waterworth, “Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye,” Optom. Vis. Sci. 70(9), 716–722 (1993).
[Crossref] [PubMed]

1992 (1)

1991 (1)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

1988 (1)

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65(2), 99–107 (1988).
[Crossref] [PubMed]

Akondi, V.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Artal, P.

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

D. A. Atchison, G. Smith, and M. D. Waterworth, “Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye,” Optom. Vis. Sci. 70(9), 716–722 (1993).
[Crossref] [PubMed]

Auffarth, G. U.

G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
[Crossref] [PubMed]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

Burns, S. A.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Cánovas, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Cooper, D. P.

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65(2), 99–107 (1988).
[Crossref] [PubMed]

Cortes, D.

Dorronsoro, C.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Durán, S.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Garzon, N.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Gonzalez-Ramos, A.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Hill-Bator, A.

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

Hiraoka, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

M. Nakajima, T. Hiraoka, Y. Hirohara, T. Oshika, and T. Mihashi, “Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared,” Biomed. Opt. Express 6(7), 2676–2694 (2015).
[Crossref] [PubMed]

Hirohara, Y.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

M. Nakajima, T. Hiraoka, Y. Hirohara, T. Oshika, and T. Mihashi, “Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared,” Biomed. Opt. Express 6(7), 2676–2694 (2015).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Józwik, A.

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

Khoramnia, R.

G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
[Crossref] [PubMed]

Labuz, G.

G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
[Crossref] [PubMed]

Llorente, L.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

López-Gil, N.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

Manzanera, S.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

Marcos, S.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Mihashi, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

M. Nakajima, T. Hiraoka, Y. Hirohara, T. Oshika, and T. Mihashi, “Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared,” Biomed. Opt. Express 6(7), 2676–2694 (2015).
[Crossref] [PubMed]

Millán, M. S.

M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
[Crossref] [PubMed]

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Montés-Micó, R.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

Nakajima, M.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

M. Nakajima, T. Hiraoka, Y. Hirohara, T. Oshika, and T. Mihashi, “Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared,” Biomed. Opt. Express 6(7), 2676–2694 (2015).
[Crossref] [PubMed]

Navarro, R.

R. Navarro, “Letter to the editor,” J. Optom. 2, 163–164 (2009).

R. Navarro, “The optical design of the human eye: a critical review,” J. Optom. 2(1), 3–18 (2009).
[Crossref]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Oshika, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

M. Nakajima, T. Hiraoka, Y. Hirohara, T. Oshika, and T. Mihashi, “Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared,” Biomed. Opt. Express 6(7), 2676–2694 (2015).
[Crossref] [PubMed]

Papadatou, E.

G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
[Crossref] [PubMed]

Pascual, D.

Pease, P. L.

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65(2), 99–107 (1988).
[Crossref] [PubMed]

Pérez-Merino, P.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Piers, P.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

Piers, P. A.

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Poyales, F.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Prieto, P. M.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Ríos-López, I.

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Schwarz, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Siedlecki, D.

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

D. A. Atchison, G. Smith, and M. D. Waterworth, “Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye,” Optom. Vis. Sci. 70(9), 716–722 (1993).
[Crossref] [PubMed]

Takagi, S.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

Turno-Krecicka, A.

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

Vega, F.

M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
[Crossref] [PubMed]

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Vinas, M.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

Waterworth, M. D.

D. A. Atchison, G. Smith, and M. D. Waterworth, “Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye,” Optom. Vis. Sci. 70(9), 716–722 (1993).
[Crossref] [PubMed]

Weeber, H.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

Weeber, H. A.

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Yamamoto, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

Ye, M.

Zajac, M.

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

Zhang, X.

Zhang, X. X.

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

Am. J. Optom. Physiol. Opt. (1)

D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65(2), 99–107 (1988).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

Invest. Ophthalmol. Vis. Sci. (2)

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Optom. (2)

R. Navarro, “The optical design of the human eye: a critical review,” J. Optom. 2(1), 3–18 (2009).
[Crossref]

R. Navarro, “Letter to the editor,” J. Optom. 2, 163–164 (2009).

J. Refract. Surg. (3)

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

G. Łabuz, E. Papadatou, R. Khoramnia, and G. U. Auffarth, “Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses,” J. Refract. Surg. 34(12), 832–838 (2018).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

J. Vis. (1)

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Optom. Vis. Sci. (3)

D. A. Atchison, G. Smith, and M. D. Waterworth, “Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye,” Optom. Vis. Sci. 70(9), 716–722 (1993).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, and A. Turno-Kręcicka, “In vivo longitudinal chromatic aberration of pseudophakic eyes,” Optom. Vis. Sci. 91(2), 240–246 (2014).
[PubMed]

PLoS One (1)

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref] [PubMed]

Vision Res. (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Other (5)

https://www.thorlabs.com .

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth‐Heinemann, 2000).

R. B. Rabbetts, Bennett and Rabbett's Clinical Visual Optics, 4e (Butterworth‐Heinemann Elsevier, 2007).

Th. Young, “On the mechanism of the eye,” Philosophical Transactions of the Royal Society of London, 91(Part I) (1801), pp. 23–88.

D. A. Atchison and W. N. Charman, “Thomas Young's contribution to visual optics: The Bakerian lecture ‘On the mechanism of the eye’,” Journal of Vision 10(12), 1 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Chromatic refractive error using Scheiner disc. An eye that is emmetropic for the green light (a) becomes myopic for the blue (b) and hyperopic for the red (c) as a consequence of LCA. The subject perceives a single image of a slit in (a) but two images in (b) and (c).
Fig. 2
Fig. 2 Scheme of the autorefractor combined with a Scheiner disc. (a) Ideal LCA-free emmetropic subject looking at a distance test that is the image through the achromat of the slit at F. Normal emmetropic subject affected by LCA with test placed at the object conjugate through the achromat of their far point: (b) OR, under red light, and (c) OB, under blue light.
Fig. 3
Fig. 3 Setup (proof of concept) used in clinic. Patient’s head (not shown) locates at a chin rest.
Fig. 4
Fig. 4 Experimental CDRx obtained for the two groups of phakic eyes and three groups of pseudophakic eyes.

Tables (7)

Tables Icon

Table 1 Spectral data of LEDsa

Tables Icon

Table 2 Optical data of monofocal intraocular lensesa

Tables Icon

Table 3 Descriptive data of the phakic patients

Tables Icon

Table 4 Descriptive data of the pseudophakic patients

Tables Icon

Table 5 Experimental values of LCA for phakic eyes

Tables Icon

Table 6 Experimental values of LCA for pseudophakic eyes

Tables Icon

Table 7 Differences in the LCA between pair of groups (p-value)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

LCACDRx= L B L R .
L i = l i 1 = [ f( f 2 z i +k ) ] 1 ,i={ R,B }.

Metrics