Abstract

Multi-wavelength ophthalmic imaging and stimulation of photoreceptor cells require consideration of chromatic dispersion of the eye, manifesting in longitudinal and transverse chromatic aberrations. Contemporary image-based techniques to measure and correct transverse chromatic aberration (TCA) and the resulting transverse chromatic offset (TCO) in an adaptive optics retinal imaging system are precise but lack compensation of small but significant shifts in eye position occurring during in vivo testing. Here, we present a method that requires only a single measurement of TCO during controlled movements of the eye to map retinal chromatic image shifts to the image space of a pupil camera. After such calibration, TCO can be compensated by continuously monitoring eye position during experimentation and by interpolating correction vectors from a linear fit to the calibration data. The average change rate of TCO per head shift and the correlation between Kappa and the individual foveal TCA are close to the expectations based on a chromatic eye model. Our solution enables continuous compensation of TCO with high spatial precision and avoids high light intensities required for re-measuring TCO after eye position changes, which is necessary for foveal cone-targeted psychophysical experimentation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye

Wolf M. Harmening, Pavan Tiruveedhula, Austin Roorda, and Lawrence C. Sincich
Biomed. Opt. Express 3(9) 2066-2077 (2012)

Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction

Alexandra E. Boehm, Claudio M. Privitera, Brian P. Schmidt, and Austin Roorda
Biomed. Opt. Express 10(4) 1691-1706 (2019)

Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope

Kate Grieve, Pavan Tiruveedhula, Yuhua Zhang, and Austin Roorda
Opt. Express 14(25) 12230-12242 (2006)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
    [Crossref] [PubMed]
  2. K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
    [Crossref] [PubMed]
  3. W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
    [Crossref] [PubMed]
  4. W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
    [Crossref] [PubMed]
  5. R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
    [Crossref] [PubMed]
  6. B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11), 19 (2018).
    [Crossref] [PubMed]
  7. J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
    [Crossref] [PubMed]
  8. Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
    [Crossref] [PubMed]
  9. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  10. P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
    [Crossref] [PubMed]
  11. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  12. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
    [Crossref] [PubMed]
  13. B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28(9), 1871 (2011).
    [Crossref]
  14. W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
    [Crossref] [PubMed]
  15. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref] [PubMed]
  16. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref] [PubMed]
  17. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
    [Crossref] [PubMed]
  18. C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
    [Crossref] [PubMed]
  19. A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
    [Crossref] [PubMed]
  20. N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
    [Crossref] [PubMed]
  21. D. A. Atchison and P. Artal, Handbook of Visual Optics (Taylor & Francis Group, 2017).
  22. F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vis. Sci. 79(5), 329–334 (2002).
    [Crossref] [PubMed]
  23. D. Ivanchenko, Z. M. Hafed, and F. Schaeffel, “How correlated are drifts in both eyes during fixational eye movements?” Invest. Ophthalmol. Vis. Sci. 59, 5792 (2018).
  24. P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
    [Crossref] [PubMed]
  25. U. Wildenmann and F. Schaeffel, “Variations of pupil centration and their effects on video eye tracking,” Ophthalmic Physiol. Opt. 33(6), 634–641 (2013).
    [Crossref] [PubMed]
  26. T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
    [Crossref] [PubMed]
  27. C. H. Morimoto and M. R. M. Mimica, “Eye gaze tracking techniques for interactive applications,” Comput. Vis. Image Underst. 98(1), 4–24 (2005).
    [Crossref]
  28. S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
    [Crossref] [PubMed]
  29. D. Model, M. Eizenman, and V. Sturm, “Fixation-free assessment of the Hirschberg ratio,” Invest. Ophthalmol. Vis. Sci. 51(8), 4035–4039 (2010).
    [Crossref] [PubMed]
  30. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
    [Crossref] [PubMed]
  31. P. M. Kiely, G. Smith, and L. G. Carney, “The Mean Shape of the Human Cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
    [Crossref]
  32. E. Iyamu and E. Osuobeni, “Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure,” J. Optom. 5(2), 87–97 (2012).
    [Crossref]
  33. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4(8), 1666–1672 (1987).
    [Crossref] [PubMed]
  34. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [Crossref] [PubMed]
  35. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [Crossref] [PubMed]
  36. D. R. Williams and N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4(8), 1514–1523 (1987).
    [Crossref] [PubMed]
  37. J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
    [Crossref] [PubMed]
  38. C. M. M. Abbud and A. A. V. Cruz, “Variability of Vernier acuity measurements in untrained subjects of different ages,” Braz. J. Med. Biol. Res. 35(2), 223–227 (2002).
    [Crossref] [PubMed]
  39. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
    [PubMed]

2019 (2)

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
[Crossref] [PubMed]

2018 (3)

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11), 19 (2018).
[Crossref] [PubMed]

D. Ivanchenko, Z. M. Hafed, and F. Schaeffel, “How correlated are drifts in both eyes during fixational eye movements?” Invest. Ophthalmol. Vis. Sci. 59, 5792 (2018).

2017 (3)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

2016 (4)

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

2015 (3)

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

2014 (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

2013 (1)

U. Wildenmann and F. Schaeffel, “Variations of pupil centration and their effects on video eye tracking,” Ophthalmic Physiol. Opt. 33(6), 634–641 (2013).
[Crossref] [PubMed]

2012 (2)

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

E. Iyamu and E. Osuobeni, “Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure,” J. Optom. 5(2), 87–97 (2012).
[Crossref]

2011 (1)

2010 (1)

D. Model, M. Eizenman, and V. Sturm, “Fixation-free assessment of the Hirschberg ratio,” Invest. Ophthalmol. Vis. Sci. 51(8), 4035–4039 (2010).
[Crossref] [PubMed]

2005 (3)

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

C. H. Morimoto and M. R. M. Mimica, “Eye gaze tracking techniques for interactive applications,” Comput. Vis. Image Underst. 98(1), 4–24 (2005).
[Crossref]

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

2002 (2)

C. M. M. Abbud and A. A. V. Cruz, “Variability of Vernier acuity measurements in untrained subjects of different ages,” Braz. J. Med. Biol. Res. 35(2), 223–227 (2002).
[Crossref] [PubMed]

F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vis. Sci. 79(5), 329–334 (2002).
[Crossref] [PubMed]

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

1998 (1)

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

1995 (1)

1992 (1)

1990 (3)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

1987 (2)

1984 (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

1982 (1)

P. M. Kiely, G. Smith, and L. G. Carney, “The Mean Shape of the Human Cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Abbud, C. M. M.

C. M. M. Abbud and A. A. V. Cruz, “Variability of Vernier acuity measurements in untrained subjects of different ages,” Braz. J. Med. Biol. Res. 35(2), 223–227 (2002).
[Crossref] [PubMed]

Artal, P.

Atchison, D. A.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

Bach, M.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Bedell, H. E.

Berendschot, T. T. J. M.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

Bernstein, P. S.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Boehm, A. E.

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Brainard, D. H.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

Bruce, K. S.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Burns, S. A.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Campbell, M. C.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

Carney, L. G.

P. M. Kiely, G. Smith, and L. G. Carney, “The Mean Shape of the Human Cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Chisholm, W.

Coletta, N. J.

Cooper, R. F.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

Cortes, D.

Cottaris, N. P.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

Cruz, A. A. V.

C. M. M. Abbud and A. A. V. Cruz, “Variability of Vernier acuity measurements in untrained subjects of different ages,” Braz. J. Med. Biol. Res. 35(2), 223–227 (2002).
[Crossref] [PubMed]

Cunningham, E. T.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

de Brabander, J.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

Domdei, L.

Domdei, N.

Dorronsoro, C.

Dubra, A.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

Duncan, J. L.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Eizenman, M.

D. Model, M. Eizenman, and V. Sturm, “Fixation-free assessment of the Hirschberg ratio,” Invest. Ophthalmol. Vis. Sci. 51(8), 4035–4039 (2010).
[Crossref] [PubMed]

Foote, K. G.

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11), 19 (2018).
[Crossref] [PubMed]

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Gorin, M. B.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Hafed, Z. M.

D. Ivanchenko, Z. M. Hafed, and F. Schaeffel, “How correlated are drifts in both eyes during fixational eye movements?” Invest. Ophthalmol. Vis. Sci. 59, 5792 (2018).

Harmening, W. M.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Henry, L.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Hoang, T. A.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Holland, J.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Holz, F. G.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Ivanchenko, D.

D. Ivanchenko, Z. M. Hafed, and F. Schaeffel, “How correlated are drifts in both eyes during fixational eye movements?” Invest. Ophthalmol. Vis. Sci. 59, 5792 (2018).

Iyamu, E.

E. Iyamu and E. Osuobeni, “Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure,” J. Optom. 5(2), 87–97 (2012).
[Crossref]

Jaeken, B.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Kiely, P. M.

P. M. Kiely, G. Smith, and L. G. Carney, “The Mean Shape of the Human Cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Langston, B. R.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Lidkea, B.

Linden, M.

Lobecke, A. C.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

Lujan, B. J.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Lundström, L.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28(9), 1871 (2011).
[Crossref]

Macdonnell, J. E.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Mangan, M. C.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Mimica, M. R. M.

C. H. Morimoto and M. R. M. Mimica, “Eye gaze tracking techniques for interactive applications,” Comput. Vis. Image Underst. 98(1), 4–24 (2005).
[Crossref]

Model, D.

D. Model, M. Eizenman, and V. Sturm, “Fixation-free assessment of the Hirschberg ratio,” Invest. Ophthalmol. Vis. Sci. 51(8), 4035–4039 (2010).
[Crossref] [PubMed]

Monsour, C. S.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Morgan, J. I. W.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

Morimoto, C. H.

C. H. Morimoto and M. R. M. Mimica, “Eye gaze tracking techniques for interactive applications,” Comput. Vis. Image Underst. 98(1), 4–24 (2005).
[Crossref]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

Ogboso, Y. U.

Osuobeni, E.

E. Iyamu and E. Osuobeni, “Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure,” J. Optom. 5(2), 87–97 (2012).
[Crossref]

Pascual, D.

Patel, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Polwattage, B. L.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Poonja, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Prieto, P. M.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Privitera, C.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Privitera, C. M.

Qin, J.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Ratnam, K.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Reiniger, J. L.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

Roorda, A.

A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
[Crossref] [PubMed]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11), 19 (2018).
[Crossref] [PubMed]

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Rynders, M.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

Sabesan, R.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

Schaeffel, F.

D. Ivanchenko, Z. M. Hafed, and F. Schaeffel, “How correlated are drifts in both eyes during fixational eye movements?” Invest. Ophthalmol. Vis. Sci. 59, 5792 (2018).

U. Wildenmann and F. Schaeffel, “Variations of pupil centration and their effects on video eye tracking,” Ophthalmic Physiol. Opt. 33(6), 634–641 (2013).
[Crossref] [PubMed]

F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vis. Sci. 79(5), 329–334 (2002).
[Crossref] [PubMed]

Schmidt, B. P.

A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
[Crossref] [PubMed]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11), 19 (2018).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Schwartz, S. D.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Simonet, P.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

Sincich, L. C.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

P. M. Kiely, G. Smith, and L. G. Carney, “The Mean Shape of the Human Cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Sturm, V.

D. Model, M. Eizenman, and V. Sturm, “Fixation-free assessment of the Hirschberg ratio,” Invest. Ophthalmol. Vis. Sci. 51(8), 4035–4039 (2010).
[Crossref] [PubMed]

Suheimat, M.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Thibos, L. N.

Tiruveedhula, P.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

Tu, J. H.

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Tuten, W. S.

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

Unsbo, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Verbakel, F.

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

Vinas, M.

Wang, Q.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Wildenmann, U.

U. Wildenmann and F. Schaeffel, “Variations of pupil centration and their effects on video eye tracking,” Ophthalmic Physiol. Opt. 33(6), 634–641 (2013).
[Crossref] [PubMed]

Williams, D. R.

Wilson, S. F.

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

Winter, S.

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Ye, M.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Am. J. Ophthalmol. Case Rep. (1)

J. H. Tu, K. G. Foote, B. J. Lujan, K. Ratnam, J. Qin, M. B. Gorin, E. T. Cunningham, W. S. Tuten, J. L. Duncan, and A. Roorda, “Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis,” Am. J. Ophthalmol. Case Rep. 7, 14–19 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Braz. J. Med. Biol. Res. (1)

C. M. M. Abbud and A. A. V. Cruz, “Variability of Vernier acuity measurements in untrained subjects of different ages,” Braz. J. Med. Biol. Res. 35(2), 223–227 (2002).
[Crossref] [PubMed]

Comput. Vis. Image Underst. (1)

C. H. Morimoto and M. R. M. Mimica, “Eye gaze tracking techniques for interactive applications,” Comput. Vis. Image Underst. 98(1), 4–24 (2005).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (4)

D. Model, M. Eizenman, and V. Sturm, “Fixation-free assessment of the Hirschberg ratio,” Invest. Ophthalmol. Vis. Sci. 51(8), 4035–4039 (2010).
[Crossref] [PubMed]

D. Ivanchenko, Z. M. Hafed, and F. Schaeffel, “How correlated are drifts in both eyes during fixational eye movements?” Invest. Ophthalmol. Vis. Sci. 59, 5792 (2018).

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

J. Neurosci. (2)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (5)

J. Optom. (1)

E. Iyamu and E. Osuobeni, “Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure,” J. Optom. 5(2), 87–97 (2012).
[Crossref]

J. Refract. Surg. (1)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

J. Vis. (4)

J. L. Reiniger, A. C. Lobecke, R. Sabesan, M. Bach, F. Verbakel, J. de Brabander, F. G. Holz, T. T. J. M. Berendschot, and W. M. Harmening, “Habitual higher order aberrations affect Landolt but not Vernier acuity,” J. Vis. 19(5), 11 (2019).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

W. S. Tuten, R. F. Cooper, P. Tiruveedhula, A. Dubra, A. Roorda, N. P. Cottaris, D. H. Brainard, and J. I. W. Morgan, “Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?” J. Vis. 18(8), 6 (2018).
[Crossref] [PubMed]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11), 19 (2018).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

U. Wildenmann and F. Schaeffel, “Variations of pupil centration and their effects on video eye tracking,” Ophthalmic Physiol. Opt. 33(6), 634–641 (2013).
[Crossref] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

Opt. Acta (Lond.) (1)

P. M. Kiely, G. Smith, and L. G. Carney, “The Mean Shape of the Human Cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Opt. Lett. (1)

Optom. Vis. Sci. (2)

T. A. Hoang, J. E. Macdonnell, M. C. Mangan, C. S. Monsour, B. L. Polwattage, S. F. Wilson, M. Suheimat, and D. A. Atchison, “Time Course of Pupil Center Location after Ocular Drug Application,” Optom. Vis. Sci. 93(6), 594–599 (2016).
[Crossref] [PubMed]

F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vis. Sci. 79(5), 329–334 (2002).
[Crossref] [PubMed]

Sci. Adv. (1)

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Vision Res. (4)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Other (1)

D. A. Atchison and P. Artal, Handbook of Visual Optics (Taylor & Francis Group, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 On-axis eye tracker with AOSLO as light source. (A) Photograph of the physical implementation from a top-oblique angle. The pink AOSLO beam is drawn for illustrative purposes and was not visible. (B) Side-view, to scale. The participant’s head could be moved via XYZ-microdrives attached to a bite bar. (C) Using the 840 nm beam of the AOSLO as light source, retinally back-scattered light illuminates the pupil from within the eyeball. The first Purkinje image was used to track the eye’s position relative to the AOSLO beam. “N” marks the first Nodal point of the eye and defines the intersection between pupillary and visual axes. Note that the camera is aligned with the visual axis. (D) Pupil and Purkinje image could be tracked with high precision (1 image pixel equaled 30 μm in the pupil plane). During operation, digital overlays could be displayed to aid positioning during calibration.
Fig. 2
Fig. 2 Calibration processing steps. TCO and eye tracking data were recorded simultaneously while the operator moves the participant’s eye in front of the system. (A) For synchronization, three quick full on and off cycles flashed the imaging beam (before and after vertical red lines). Due to slight differences in sampling rate, TCO data was down-sampled via linear interpolation. (B) Larger TCO data excursions (grey) were removed by thresholding for frame by frame TCO sample changes, ∆ TCO (bottom graph, red line marks 2-pixel-threshold). (C) Computation of the correlation between TCO and Purkinje image position by least-squares linear fit. The resulting function (shown as inset) was used to continuously estimate TCO based on eye tracking data.
Fig. 3
Fig. 3 Calibration sequences recorded in three participants (P1, P2, P3). Top row: Captured Purkinje image positions during calibration. 2nd row: TCO data of the same calibration sequence, based on video data recorded at 0.4 degree eccentricity. 3rd and 4th row: Linear regression for horizontal and vertical eye shifts, respectively. Percent samples used (U), range of data points (Q80) and goodness of fit (R2) are metrics chosen to support the operator’s decision whether a calibration has to be repeated (an example is shown in the 4th column). Black data points are the usable samples after interpolation and removing data noise, grey data points represent the data samples flagged as noise (see Methods for details).
Fig. 4
Fig. 4 TCO data across 14 eyes of 14 participants. (A) Boxplot of the median calibration slope for each eye (3 repeats each). The average horizontal correlation slope across eyes was 3.55 ± 0.08 arcmin/mm, the average vertical correlation slope 3.43 ± 0.12 arcmin/mm. This difference between horizontal and vertical slope was significant (p = 0.02, Wilcoxon signed rank test). (B) Calculated TCO for each run with a Purkinje position centered on the AOSLO beam. (C) Calculated TCO for a centered pupil position. The one left eye included in this data set shows an absolute TCO with inversed sign (green diamonds). (D) Angle Kappa for all eyes. (E) Correlation of horizontal Kappa and horizontal TCO of the centered pupil. (F) Correlation of vertical Kappa and vertical TCO of the centered pupil. For plots (B-F), vertical and horizontal bars mark the 0.5 quantile of the calibration function (TCO) and the standard deviation (Kappa). Different symbols mark different eyes. If no error bar is visible, the error is smaller than the symbol.
Fig. 5
Fig. 5 Error estimation. (A) Exemplary comparison between measured TCO (black) and estimated TCO (red) following a single calibration sequence. Grey areas mark examples where image quality did not allow TCO measurement. (B) Error of TCO estimation over time. Average ( ± std) estimation error was 0.05 ± 0.04 arcmin. Single events may exceed an estimation error of 1 pixel (1 pixel = 0.1 arcmin). (C) To determine TCO estimation precision, 20 consecutive calibration sequences were validated against each other. The framewise displacement error was plotted in both spatial dimensions with one-tenth pixel resolution (1 block = 0.01 arcmin). 95% of all displacement errors were within ± 0.15 arcmin (horizontal) and ± 0.12 arcmin (vertical). (D) Repeatability was tested by using the average eye position in the 20 calibration functions (open circles). The standard deviation across all data is visualized via the extent of the horizontal and vertical bars (STDx = 0.022 arcmin/ STDy = 0.024 arcmin).
Fig. 6
Fig. 6 Subjective validation of our eye tracking based TCO estimation approach. (A) AOSLO raster with stimulus to scale. The task was to center the green circle within the red notches. (B) Results from all 3 participants in the same scale as the zoomed stimulus in (A) (white scale bar = 2 arcmin). The mean difference between predicted position from estimation and subjective alignment was 2.49, 2.96, and 2.95 pixels (0.25, 0.30 and 0.30 arcmin) for P1, P2, and P3, respectively. There was no systematic direction for displacement errors. The enlargement below each panel in (B) displays the pixelwise TCO correction errors for each participant. The white cross marks the zero difference position.
Fig. 7
Fig. 7 Demonstration of TCO compensation error at different retinal eccentricities. Top: Enlarged view of a typical stimulation site in AOSLO based experiments with current static TCO compensation. Overlay shows actual light delivery based on minimal head shifts in front of the system recorded by our eye tracking system during experiments in three participants (P1-3). Middle: AOSLO image montage encompassing the central fovea, asterisk marks the preferred retinal location of fixation, rings denote eccentricity. Cone size increases rapidly with increasing eccentricity. Bottom: Enlarged view of the smallest cones in the central fovea, 0.4 degree and 0.9 degree eccentricity. Overlays display theoretical stimulus delivery with ongoing TCO compensation as presented in this study. Our typical cell sized square-stimulus expands 3 pixels (diffraction limited FWHM, 0.3 arcmin).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

TCA  EyeDisplacement×LCA
κ x =arctan( P I x P C x PN ¯ )
TC O X ( P I X )=m P I X +b

Metrics