Abstract

Objective: To assess if incorporation of DRS sensing into real-time robotic surgery systems has merit. DRS as a technology is relatively simple, cost-effective and provides a non-contact approach to tissue differentiation. Methods: Supervised machine learning analysis of diffuse reflectance spectra was performed to classify human joint tissue that was collected from surgical procedures. Results: We have used supervised machine learning in the classification of a DRS human joint tissue data set and achieved classification accuracy in excess of 99%. Sensitivity for the various classes were; cartilage 99.7%, subchondral 99.2%, meniscus 100% and cancellous 100%. Full wavelength range is required for maximum classification accuracy. The wavelength resolution must be larger than 8nm. A SNR better than 10:1 was required to achieve a classification accuracy greater than 50%. The 800-900nm wavelength range gave the greatest accuracy amongst those investigated Conclusion: DRS is a viable method for differentiating human joint tissue and has the potential to be incorporated into robotic orthopaedic surgery.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid feature selection and SVM-based classification for mouse skin precancerous stages diagnosis from bimodal spectroscopy

F. Abdat, M. Amouroux, Y. Guermeur, and W. Blondel
Opt. Express 20(1) 228-244 (2012)

Diffuse reflectance spectroscopy of human liver tumor specimens - towards a tissue differentiating optical biopsy needle using light emitting diodes

Alina Keller, Piotr Bialecki, Torsten Johannes Wilhelm, and Marcus Klaus Vetter
Biomed. Opt. Express 9(3) 1069-1081 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
    [Crossref] [PubMed]
  2. S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
    [Crossref] [PubMed]
  3. P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
    [Crossref] [PubMed]
  4. F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
    [Crossref] [PubMed]
  5. G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
    [Crossref] [PubMed]
  6. T. Menovsky, M. van den Bergh Weerman, and J. F. Beek, “Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study,” Microsurgery 17(10), 562–567 (1996).
    [Crossref] [PubMed]
  7. T. Menovsky, M. Van Den Bergh Weerman, and J. F. Beek, “Effect of CO(2)-Milliwatt laser on peripheral nerves: part II. A histological and functional study,” Microsurgery 20(3), 150–155 (2000).
    [Crossref] [PubMed]
  8. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  9. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
    [Crossref] [PubMed]
  10. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref] [PubMed]
  11. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
    [Crossref] [PubMed]
  12. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
    [Crossref] [PubMed]
  13. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
    [Crossref] [PubMed]
  14. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
    [Crossref] [PubMed]
  15. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref] [PubMed]
  16. Z. Ge, K. T. Schomacker, and N. S. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques,” Appl. Spectrosc. 52(6), 833–839 (1998).
    [Crossref]
  17. M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
    [Crossref] [PubMed]
  18. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
    [Crossref] [PubMed]
  19. U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
    [Crossref] [PubMed]
  20. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express 17(20), 17502–17516 (2009).
    [Crossref] [PubMed]
  21. S. Y. Lee, W. R. Lloyd, M. Chandra, R. H. Wilson, B. McKenna, D. Simeone, J. Scheiman, and M. A. Mycek, “Characterizing human pancreatic cancer precursor using quantitative tissue optical spectroscopy,” Biomed. Opt. Express 4(12), 2828–2834 (2013).
    [Crossref] [PubMed]
  22. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref] [PubMed]
  23. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
    [Crossref] [PubMed]
  24. O. Optics, “USB-650 red tide spectrometers,” https://oceanoptics.com/product/usb-650-red-tide-spectrometers/ .
  25. G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a machine learning workbench,” in Proceedings of second Australia and New Zealand conference on intelligent information systems (Institute of Electrical and Electronics Engineers, 1994), pp. 357–361.
  26. R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. Rev. 43(5), 772–777 (1989).
    [Crossref]
  27. A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI Commun. 30(2), 169–190 (2017).
    [Crossref]
  28. J. C. Gonzalez, “Using linear discriminant analysis (lda) for data explore: step-step,” https://www.apsl.net/blog/2017/07/18/using-linear-discriminant-analysis-lda-data-explore-step-step/ .
  29. R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) curve for medical researchers,” Indian Pediatr. 48(4), 277–287 (2011).
    [Crossref] [PubMed]
  30. L. F. C. S. Carvalho, M. S. Nogueira, L. P. M. Neto, T. T. Bhattacharjee, and A. A. Martin, “Raman spectral post-processing for oral tissue discrimination - a step for an automatized diagnostic system,” Biomed. Opt. Express 8(11), 5218–5227 (2017).
    [Crossref] [PubMed]
  31. T. W. Randolph, “Scale-based normalization of spectral data,” Cancer Biomark. 2(3-4), 135–144 (2006).
    [Crossref] [PubMed]
  32. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
    [Crossref]
  33. R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
    [Crossref]
  34. K. H. Liland, A. Kohler, and N. K. Afseth, “Model-based pre-processing in Raman spectroscopy of biological samples,” J. Raman Spectrosc. 47(6), 643–650 (2016).
    [Crossref]
  35. R. Kokaly, D. Despain, R. Clark, and K. Livo, “Spectral analysis of absorption features for mapping vegetation cover and microbial communities in yellowstone national park using AVIRIS data,” in Integrated Geoscience Studies in the Greater Yellowstone Area— Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem(2007), pp. 463–489.
  36. R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the plane,” Inf Process 2(1), 18–21 (1973).
    [Crossref]
  37. M. L. Open, “10-fold Crossvalidation,” https://www.openml.org/a/estimation-procedures/1 .
  38. F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
    [Crossref] [PubMed]
  39. C. Matasaru, “Mobile phone camera possibilities for spectral imaging,” in School of Computing Department (University of Eastern Finland, 2014).

2017 (2)

2016 (1)

K. H. Liland, A. Kohler, and N. K. Afseth, “Model-based pre-processing in Raman spectroscopy of biological samples,” J. Raman Spectrosc. 47(6), 643–650 (2016).
[Crossref]

2015 (1)

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
[Crossref]

2013 (3)

S. Y. Lee, W. R. Lloyd, M. Chandra, R. H. Wilson, B. McKenna, D. Simeone, J. Scheiman, and M. A. Mycek, “Characterizing human pancreatic cancer precursor using quantitative tissue optical spectroscopy,” Biomed. Opt. Express 4(12), 2828–2834 (2013).
[Crossref] [PubMed]

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2011 (2)

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) curve for medical researchers,” Indian Pediatr. 48(4), 277–287 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (3)

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

2006 (5)

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
[Crossref] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
[Crossref] [PubMed]

T. W. Randolph, “Scale-based normalization of spectral data,” Cancer Biomark. 2(3-4), 135–144 (2006).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

2002 (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

2001 (2)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

2000 (3)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

T. Menovsky, M. Van Den Bergh Weerman, and J. F. Beek, “Effect of CO(2)-Milliwatt laser on peripheral nerves: part II. A histological and functional study,” Microsurgery 20(3), 150–155 (2000).
[Crossref] [PubMed]

1999 (2)

1998 (1)

1996 (1)

T. Menovsky, M. van den Bergh Weerman, and J. F. Beek, “Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study,” Microsurgery 17(10), 562–567 (1996).
[Crossref] [PubMed]

1995 (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

1994 (1)

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

1989 (1)

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. Rev. 43(5), 772–777 (1989).
[Crossref]

1973 (1)

R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the plane,” Inf Process 2(1), 18–21 (1973).
[Crossref]

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Adler, W.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Afseth, N. K.

K. H. Liland, A. Kohler, and N. K. Afseth, “Model-based pre-processing in Raman spectroscopy of biological samples,” J. Raman Spectrosc. 47(6), 643–650 (2016).
[Crossref]

Allen, J. M.

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

Ariese, F.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
[Crossref]

Arifler, D.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

Backman, V.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Barnes, R. J.

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. Rev. 43(5), 772–777 (1989).
[Crossref]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Baxter, G. D.

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

Beek, J. F.

T. Menovsky, M. Van Den Bergh Weerman, and J. F. Beek, “Effect of CO(2)-Milliwatt laser on peripheral nerves: part II. A histological and functional study,” Microsurgery 20(3), 150–155 (2000).
[Crossref] [PubMed]

T. Menovsky, M. van den Bergh Weerman, and J. F. Beek, “Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study,” Microsurgery 17(10), 562–567 (1996).
[Crossref] [PubMed]

Bell, A. J.

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

Bevilacqua, F.

Bhattacharjee, T. T.

Bigio, I. J.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Blast, R. C.

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Breslin, T. M.

Brewer, M.

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Calarco, G.

P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
[Crossref] [PubMed]

Carvalho, L. F. C. S.

Chandra, M.

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Crawford, J. M.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Dasari, R. R.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Depeursinge, C.

Deppe, H.

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

Dhanoa, M. S.

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. Rev. 43(5), 772–777 (1989).
[Crossref]

Dimou, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Donkin, A.

G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a machine learning workbench,” in Proceedings of second Australia and New Zealand conference on intelligent information systems (Institute of Electrical and Electronics Engineers, 1994), pp. 357–361.

Douplik, A.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Feld, M. S.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Fitzmaurice, M.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Follen, M.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Gaber, T.

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI Commun. 30(2), 169–190 (2017).
[Crossref]

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Gautam, R.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
[Crossref]

Ge, Z.

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Gershenson, D.

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Gilchrist, K. W.

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Gross, J. D.

Hassanien, A. E.

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI Commun. 30(2), 169–190 (2017).
[Crossref]

Hering, P.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Holmes, G.

G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a machine learning workbench,” in Proceedings of second Australia and New Zealand conference on intelligent information systems (Institute of Electrical and Electronics Engineers, 1994), pp. 357–361.

Ibrahim, A.

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI Commun. 30(2), 169–190 (2017).
[Crossref]

Indrayan, A.

R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) curve for medical researchers,” Indian Pediatr. 48(4), 277–287 (2011).
[Crossref] [PubMed]

Itzkan, I.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Ivanenko, M.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jarvis, R. A.

R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the plane,” Inf Process 2(1), 18–21 (1973).
[Crossref]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Klasing, M.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Knipfer, C.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

Kohler, A.

K. H. Liland, A. Kohler, and N. K. Afseth, “Model-based pre-processing in Raman spectroscopy of biological samples,” J. Raman Spectrosc. 47(6), 643–650 (2016).
[Crossref]

Kumar, R.

R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) curve for medical researchers,” Indian Pediatr. 48(4), 277–287 (2011).
[Crossref] [PubMed]

Kuttenberger, J. J.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Lee, S. Y.

Liland, K. H.

K. H. Liland, A. Kohler, and N. K. Afseth, “Model-based pre-processing in Raman spectroscopy of biological samples,” J. Raman Spectrosc. 47(6), 643–650 (2016).
[Crossref]

Lister, S. J.

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. Rev. 43(5), 772–777 (1989).
[Crossref]

Lloyd, W. R.

Lowe, A. S.

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

Lueth, T. C.

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

MacAulay, C.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

Mancini, A.

P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
[Crossref] [PubMed]

Manoharan, R.

Marquet, P.

Martin, A. A.

McKenna, B.

Menovsky, T.

T. Menovsky, M. Van Den Bergh Weerman, and J. F. Beek, “Effect of CO(2)-Milliwatt laser on peripheral nerves: part II. A histological and functional study,” Microsurgery 20(3), 150–155 (2000).
[Crossref] [PubMed]

T. Menovsky, M. van den Bergh Weerman, and J. F. Beek, “Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study,” Microsurgery 17(10), 562–567 (1996).
[Crossref] [PubMed]

Mourant, J. R.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Müller, M. G.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Mycek, M. A.

Neto, L. P. M.

Ni, X. G.

P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
[Crossref] [PubMed]

Nishioka, N. S.

Nkenke, E.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Nogueira, M. S.

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Oetter, N.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

Palmer, G. M.

Perelman, L. T.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Piguet, D.

Purdy, J.

Ramanujam, N.

Randolph, T. W.

T. W. Randolph, “Scale-based normalization of spectral data,” Cancer Biomark. 2(3-4), 135–144 (2006).
[Crossref] [PubMed]

Richards-Kortum, R.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Rohde, M.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Sader, R.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Scheiman, J.

Schmidt, M.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Schomacker, K. T.

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Seiler, M.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Shields, S. J.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Silva, E.

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Simeone, D.

Spinelli, P.

P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
[Crossref] [PubMed]

Stelzle, F.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Stopp, S.

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

Stübinger, S.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Svejdar, D.

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

Tangermann-Gerk, K.

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Tharwat, A.

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI Commun. 30(2), 169–190 (2017).
[Crossref]

Thomas, G. A.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Tromberg, B. J.

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Umapathy, S.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
[Crossref]

Utzinger, U.

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Van Den Bergh Weerman, M.

T. Menovsky, M. Van Den Bergh Weerman, and J. F. Beek, “Effect of CO(2)-Milliwatt laser on peripheral nerves: part II. A histological and functional study,” Microsurgery 20(3), 150–155 (2000).
[Crossref] [PubMed]

T. Menovsky, M. van den Bergh Weerman, and J. F. Beek, “Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study,” Microsurgery 17(10), 562–567 (1996).
[Crossref] [PubMed]

Vanga, S.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
[Crossref]

von Kienlin, E.

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

Von Rechenberg, B.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Waibel, A.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

Walsh, D. M.

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

Werner, M.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Wilson, R. H.

Witten, I. H.

G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a machine learning workbench,” in Proceedings of second Australia and New Zealand conference on intelligent information systems (Institute of Electrical and Electronics Engineers, 1994), pp. 357–361.

Xu, F.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Zam, A.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Zeilhofer, H. F.

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

Zhu, C.

Zonios, G.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

AI Commun. (1)

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI Commun. 30(2), 169–190 (2017).
[Crossref]

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. Rev. 43(5), 772–777 (1989).
[Crossref]

Biomed. Opt. Express (2)

Cancer Biomark. (1)

T. W. Randolph, “Scale-based normalization of spectral data,” Cancer Biomark. 2(3-4), 135–144 (2006).
[Crossref] [PubMed]

EPJ Tech. Instrum. (1)

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8 (2015).
[Crossref]

Exp. Physiol. (1)

G. D. Baxter, D. M. Walsh, J. M. Allen, A. S. Lowe, and A. J. Bell, “Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo,” Exp. Physiol. 79(2), 227–234 (1994).
[Crossref] [PubMed]

Gastroenterology (2)

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Stopp, D. Svejdar, E. von Kienlin, H. Deppe, and T. C. Lueth, “A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data,” IEEE Trans. Biomed. Eng. 55(7), 1872–1880 (2008).
[Crossref] [PubMed]

Indian Pediatr. (1)

R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) curve for medical researchers,” Indian Pediatr. 48(4), 277–287 (2011).
[Crossref] [PubMed]

Inf Process (1)

R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the plane,” Inf Process 2(1), 18–21 (1973).
[Crossref]

J. Biomed. Opt. (4)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

K. H. Liland, A. Kohler, and N. K. Afseth, “Model-based pre-processing in Raman spectroscopy of biological samples,” J. Raman Spectrosc. 47(6), 643–650 (2016).
[Crossref]

J. Transl. Med. (1)

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Med. 9(1), 20 (2011).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med. 28(1), 56–66 (2001).
[Crossref] [PubMed]

Microsurgery (2)

T. Menovsky, M. van den Bergh Weerman, and J. F. Beek, “Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study,” Microsurgery 17(10), 562–567 (1996).
[Crossref] [PubMed]

T. Menovsky, M. Van Den Bergh Weerman, and J. F. Beek, “Effect of CO(2)-Milliwatt laser on peripheral nerves: part II. A histological and functional study,” Microsurgery 20(3), 150–155 (2000).
[Crossref] [PubMed]

Minim. Invasive Ther. Allied Technol. (1)

P. Spinelli, G. Calarco, A. Mancini, and X. G. Ni, “Operative colonoscopy in cancer patients,” Minim. Invasive Ther. Allied Technol. 15(6), 339–347 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Photomed. Laser Surg. (1)

J. J. Kuttenberger, S. Stübinger, A. Waibel, M. Werner, M. Klasing, M. Ivanenko, P. Hering, B. Von Rechenberg, R. Sader, and H. F. Zeilhofer, “Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results,” Photomed. Laser Surg. 26(2), 129–136 (2008).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Sensors (Basel) (1)

F. Stelzle, C. Knipfer, W. Adler, M. Rohde, N. Oetter, E. Nkenke, M. Schmidt, and K. Tangermann-Gerk, “Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery,” Sensors (Basel) 13(10), 13717–13731 (2013).
[Crossref] [PubMed]

Other (6)

C. Matasaru, “Mobile phone camera possibilities for spectral imaging,” in School of Computing Department (University of Eastern Finland, 2014).

M. L. Open, “10-fold Crossvalidation,” https://www.openml.org/a/estimation-procedures/1 .

R. Kokaly, D. Despain, R. Clark, and K. Livo, “Spectral analysis of absorption features for mapping vegetation cover and microbial communities in yellowstone national park using AVIRIS data,” in Integrated Geoscience Studies in the Greater Yellowstone Area— Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem(2007), pp. 463–489.

J. C. Gonzalez, “Using linear discriminant analysis (lda) for data explore: step-step,” https://www.apsl.net/blog/2017/07/18/using-linear-discriminant-analysis-lda-data-explore-step-step/ .

O. Optics, “USB-650 red tide spectrometers,” https://oceanoptics.com/product/usb-650-red-tide-spectrometers/ .

G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a machine learning workbench,” in Proceedings of second Australia and New Zealand conference on intelligent information systems (Institute of Electrical and Electronics Engineers, 1994), pp. 357–361.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Spectrometer and optics setup
Fig. 2
Fig. 2 Machine learning pathway. FLDA: Fisher's linear discriminant analysis, LDA: Linear discriminant analysis.
Fig. 3
Fig. 3 Average DRS spectra for each tissue type after SNV normalization
Fig. 4
Fig. 4 Accuracy of classifier for different 100nm wavelength ranges with 95% confidence intervals shown as error bars- determined from the 10 fold cross validation procedure.
Fig. 5
Fig. 5 The classification accuracy versus wavelength resolution- the same machine learning tools were used in each wavelength range multiclass FLDA dimension reduction followed by LDA classification. The wavelength resolution was altered in software by averaging over adjacent wavelengths.

Tables (1)

Tables Icon

Table 1 Machine learning using multiclass FLDA + LDA classifier. A confusion matrix is a table that is used to describe the performance of a classification model. The classification accuracy was >99% in 10-fold cross-validation. Absolute values are in brackets.