Abstract

A gradual drop in visibility with obliquely incident light on retinal photoreceptors is namely described by the Stiles-Crawford effect of the first kind and characterized by a directionality parameter. Using a digital micromirror device in a uniaxial flicker system, here we report on variations of this effect with luminance levels, wavelengths within the visible and near-infrared spectrum and retinal regions ranging from the fovea to 7.5° parafoveal. Results show a consistent directionality in mesopic and photopic conditions. Higher directionality is measured for longer wavelengths, and a decrease with retinal eccentricity is observed. Results are discussed in relation to an absorption model for the visual pigments taking the outer-segment packing and thickness of the neural retina into account. Good correspondence is found without enforcing photoreceptor waveguiding.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber

Diego Rativa and Brian Vohnsen
Biomed. Opt. Express 2(3) 543-551 (2011)

Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography

Weihua Gao, Barry Cense, Yan Zhang, Ravi S. Jonnal, and Donald T. Miller
Opt. Express 16(9) 6486-6501 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
    [Crossref]
  2. B. Vohnsen, “The retina and the Stiles–Crawford effects,” chapter 18 in Handbook of Visual Optics, Vol. I, P. Artal, ed. (2017), pp. 257–276.
  3. G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
    [Crossref] [PubMed]
  4. J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12(7), 497–503 (1973).
    [PubMed]
  5. J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15(8–9), 1005–1009 (1975).
    [Crossref] [PubMed]
  6. H. E. Bedell and J. M. Enoch, “A study of the Stiles-Crawford (S-C) function at 35 ° in the temporal field and the stability of the foveal S-C function peak over time,” J. Opt. Soc. Am. 69(3), 435–442 (1979).
    [Crossref] [PubMed]
  7. M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).
    [Crossref] [PubMed]
  8. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
    [Crossref] [PubMed]
  9. H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
    [Crossref]
  10. A. Carmichael Martins and B. Vohnsen, “Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device,” Ophthalmic Physiol. Opt. 38(3), 273–280 (2018).
    [Crossref] [PubMed]
  11. N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
    [Crossref]
  12. W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B Biol. Sci. 123(830), 90–118 (1937).
    [Crossref]
  13. S. S. Choi, L. F. Garner, and J. M. Enoch, “The relationship between the Stiles-Crawford effect of the first kind (SCE-I) and myopia,” Ophthalmic Physiol. Opt. 23(5), 465–472 (2003).
    [Crossref] [PubMed]
  14. B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. 58(19–20), 1817–1825 (2011).
    [Crossref]
  15. B. Lochocki and B. Vohnsen, “Defocus-corrected analysis of the foveal Stiles–Crawford effect of the first kind across the visible spectrum,” J. Opt. 15(12), 125301 (2013).
    [Crossref]
  16. B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
    [Crossref] [PubMed]
  17. P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refract. Surg. 44(6), 734–737 (2018).
    [Crossref] [PubMed]
  18. B. Vohnsen, “Directional sensitivity of the retina: A layered scattering model of outer-segment photoreceptor pigments,” Biomed. Opt. Express 5(5), 1569–1587 (2014).
    [Crossref] [PubMed]
  19. R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
    [Crossref] [PubMed]
  20. A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
    [Crossref] [PubMed]
  21. M. Alpern, “The Stiles-Crawford effect of the second kind (SCII): a review,” Perception 15(6), 785–799 (1986).
    [Crossref] [PubMed]
  22. B. Vohnsen, “On the spectral relation between the first and second Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2261–2271 (2009).
    [Crossref]
  23. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16(9), 6486–6501 (2008).
    [Crossref] [PubMed]
  24. H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
    [Crossref] [PubMed]
  25. C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
    [Crossref] [PubMed]
  26. B. Vohnsen, I. Iglesias, and P. Artal, “Directional light scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 22(12), 2606–2612 (2005).
    [Crossref] [PubMed]
  27. A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res. 49(1), 21–31 (1992).
    [Crossref] [PubMed]
  28. C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26(6), 847–855 (1986).
    [Crossref] [PubMed]
  29. A. Meadway and L. C. Sincich, “Light propagation and capture in cone photoreceptors,” Biomed. Opt. Express 9(11), 5543–5565 (2018).
    [Crossref] [PubMed]

2018 (3)

A. Carmichael Martins and B. Vohnsen, “Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device,” Ophthalmic Physiol. Opt. 38(3), 273–280 (2018).
[Crossref] [PubMed]

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refract. Surg. 44(6), 734–737 (2018).
[Crossref] [PubMed]

A. Meadway and L. C. Sincich, “Light propagation and capture in cone photoreceptors,” Biomed. Opt. Express 9(11), 5543–5565 (2018).
[Crossref] [PubMed]

2017 (1)

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

2015 (1)

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

2014 (1)

2013 (2)

B. Lochocki and B. Vohnsen, “Defocus-corrected analysis of the foveal Stiles–Crawford effect of the first kind across the visible spectrum,” J. Opt. 15(12), 125301 (2013).
[Crossref]

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

2011 (1)

B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. 58(19–20), 1817–1825 (2011).
[Crossref]

2009 (2)

N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
[Crossref]

B. Vohnsen, “On the spectral relation between the first and second Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2261–2271 (2009).
[Crossref]

2008 (2)

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
[Crossref] [PubMed]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16(9), 6486–6501 (2008).
[Crossref] [PubMed]

2005 (1)

2003 (1)

S. S. Choi, L. F. Garner, and J. M. Enoch, “The relationship between the Stiles-Crawford effect of the first kind (SCE-I) and myopia,” Ophthalmic Physiol. Opt. 23(5), 465–472 (2003).
[Crossref] [PubMed]

1995 (1)

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
[Crossref] [PubMed]

1993 (1)

1992 (1)

A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res. 49(1), 21–31 (1992).
[Crossref] [PubMed]

1986 (2)

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26(6), 847–855 (1986).
[Crossref] [PubMed]

M. Alpern, “The Stiles-Crawford effect of the second kind (SCII): a review,” Perception 15(6), 785–799 (1986).
[Crossref] [PubMed]

1983 (1)

M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).
[Crossref] [PubMed]

1979 (1)

1975 (1)

J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15(8–9), 1005–1009 (1975).
[Crossref] [PubMed]

1973 (2)

J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12(7), 497–503 (1973).
[PubMed]

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

1967 (1)

G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
[Crossref] [PubMed]

1937 (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B Biol. Sci. 123(830), 90–118 (1937).
[Crossref]

1933 (1)

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Alpern, M.

M. Alpern, “The Stiles-Crawford effect of the second kind (SCII): a review,” Perception 15(6), 785–799 (1986).
[Crossref] [PubMed]

M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).
[Crossref] [PubMed]

Anderson, R. S.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
[Crossref] [PubMed]

Applegate, R. A.

Artal, P.

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refract. Surg. 44(6), 734–737 (2018).
[Crossref] [PubMed]

B. Vohnsen, I. Iglesias, and P. Artal, “Directional light scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 22(12), 2606–2612 (2005).
[Crossref] [PubMed]

Atchison, D. A.

N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
[Crossref]

Barila, A. M.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
[Crossref] [PubMed]

Bedell, H. E.

Blanco, L.

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

Carmichael, A.

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

Carmichael Martins, A.

A. Carmichael Martins and B. Vohnsen, “Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device,” Ophthalmic Physiol. Opt. 38(3), 273–280 (2018).
[Crossref] [PubMed]

Cense, B.

Ching, C. C.

M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).
[Crossref] [PubMed]

Choi, S. S.

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

S. S. Choi, L. F. Garner, and J. M. Enoch, “The relationship between the Stiles-Crawford effect of the first kind (SCE-I) and myopia,” Ophthalmic Physiol. Opt. 23(5), 465–472 (2003).
[Crossref] [PubMed]

Codona, J. L.

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

Crawford, B. H.

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Crewther, D. P.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
[Crossref] [PubMed]

Crewther, S. G.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
[Crossref] [PubMed]

Doble, N.

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

Drucker, D.

A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res. 49(1), 21–31 (1992).
[Crossref] [PubMed]

Enoch, J. M.

S. S. Choi, L. F. Garner, and J. M. Enoch, “The relationship between the Stiles-Crawford effect of the first kind (SCE-I) and myopia,” Ophthalmic Physiol. Opt. 23(5), 465–472 (2003).
[Crossref] [PubMed]

H. E. Bedell and J. M. Enoch, “A study of the Stiles-Crawford (S-C) function at 35 ° in the temporal field and the stability of the foveal S-C function peak over time,” J. Opt. Soc. Am. 69(3), 435–442 (1979).
[Crossref] [PubMed]

J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15(8–9), 1005–1009 (1975).
[Crossref] [PubMed]

J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12(7), 497–503 (1973).
[PubMed]

Gao, W.

Garner, L. F.

S. S. Choi, L. F. Garner, and J. M. Enoch, “The relationship between the Stiles-Crawford effect of the first kind (SCE-I) and myopia,” Ophthalmic Physiol. Opt. 23(5), 465–472 (2003).
[Crossref] [PubMed]

Guo, H.

N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
[Crossref]

Hendrickson, A.

A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res. 49(1), 21–31 (1992).
[Crossref] [PubMed]

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26(6), 847–855 (1986).
[Crossref] [PubMed]

Hope, G. M.

J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12(7), 497–503 (1973).
[PubMed]

Iglesias, I.

Jonnal, R. S.

Kasthurirangan, S.

N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
[Crossref]

Kitahara, K.

M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).
[Crossref] [PubMed]

Lakshminarayanan, V.

Levy, A. M.

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

Li, S.

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

Liang, H.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
[Crossref] [PubMed]

Lochocki, B.

B. Lochocki and B. Vohnsen, “Defocus-corrected analysis of the foveal Stiles–Crawford effect of the first kind across the visible spectrum,” J. Opt. 15(12), 125301 (2013).
[Crossref]

B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. 58(19–20), 1817–1825 (2011).
[Crossref]

Lu, R.

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

Manzanera, S.

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refract. Surg. 44(6), 734–737 (2018).
[Crossref] [PubMed]

Meadway, A.

Miller, D. T.

Morris, H. J.

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

Pask, C.

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

Pittler, S. J.

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

Qaysi, S.

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

Rativa, D.

B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. 58(19–20), 1817–1825 (2011).
[Crossref]

Saunders, K. J.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
[Crossref] [PubMed]

Sharmin, N.

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

Silvestri, G.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
[Crossref] [PubMed]

Sincich, L. C.

Singh, N.

N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
[Crossref]

Snyder, A. W.

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

Stiles, W. S.

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B Biol. Sci. 123(830), 90–118 (1937).
[Crossref]

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Valente, D.

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

Van Loo, J. A.

J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15(8–9), 1005–1009 (1975).
[Crossref] [PubMed]

Vohnsen, B.

A. Carmichael Martins and B. Vohnsen, “Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device,” Ophthalmic Physiol. Opt. 38(3), 273–280 (2018).
[Crossref] [PubMed]

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

B. Vohnsen, “Directional sensitivity of the retina: A layered scattering model of outer-segment photoreceptor pigments,” Biomed. Opt. Express 5(5), 1569–1587 (2014).
[Crossref] [PubMed]

B. Lochocki and B. Vohnsen, “Defocus-corrected analysis of the foveal Stiles–Crawford effect of the first kind across the visible spectrum,” J. Opt. 15(12), 125301 (2013).
[Crossref]

B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. 58(19–20), 1817–1825 (2011).
[Crossref]

B. Vohnsen, “On the spectral relation between the first and second Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2261–2271 (2009).
[Crossref]

B. Vohnsen, I. Iglesias, and P. Artal, “Directional light scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 22(12), 2606–2612 (2005).
[Crossref] [PubMed]

Westheimer, G.

G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
[Crossref] [PubMed]

Wolsley, C. J.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
[Crossref] [PubMed]

Yao, X.

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

Yuodelis, C.

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26(6), 847–855 (1986).
[Crossref] [PubMed]

Zhang, Q.

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

Zhang, Y.

Behav. Brain Res. (1)

A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res. 49(1), 21–31 (1992).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Invest. Ophthalmol. (1)

J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12(7), 497–503 (1973).
[PubMed]

J. Biomed. Opt. (1)

R. Lu, A. M. Levy, Q. Zhang, S. J. Pittler, and X. Yao, “Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors,” J. Biomed. Opt. 18(10), 106013 (2013).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refract. Surg. 44(6), 734–737 (2018).
[Crossref] [PubMed]

J. Mod. Opt. (3)

B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. 58(19–20), 1817–1825 (2011).
[Crossref]

N. Singh, D. A. Atchison, S. Kasthurirangan, and H. Guo, “Influences of accommodation and myopia on the foveal Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2217–2230 (2009).
[Crossref]

B. Vohnsen, “On the spectral relation between the first and second Stiles–Crawford effect,” J. Mod. Opt. 56(20), 2261–2271 (2009).
[Crossref]

J. Opt. (1)

B. Lochocki and B. Vohnsen, “Defocus-corrected analysis of the foveal Stiles–Crawford effect of the first kind across the visible spectrum,” J. Opt. 15(12), 125301 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (2)

M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).
[Crossref] [PubMed]

G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
[Crossref] [PubMed]

J. Vis. (1)

B. Vohnsen, A. Carmichael, N. Sharmin, S. Qaysi, and D. Valente, “Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification,” J. Vis. 17(12), 18 (2017).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

S. S. Choi, L. F. Garner, and J. M. Enoch, “The relationship between the Stiles-Crawford effect of the first kind (SCE-I) and myopia,” Ophthalmic Physiol. Opt. 23(5), 465–472 (2003).
[Crossref] [PubMed]

A. Carmichael Martins and B. Vohnsen, “Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device,” Ophthalmic Physiol. Opt. 38(3), 273–280 (2018).
[Crossref] [PubMed]

Opt. Express (1)

Perception (1)

M. Alpern, “The Stiles-Crawford effect of the second kind (SCII): a review,” Perception 15(6), 785–799 (1986).
[Crossref] [PubMed]

Proc. R. Soc. Lond. B Biol. Sci. (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B Biol. Sci. 123(830), 90–118 (1937).
[Crossref]

Proc. R. Soc. Lond., B (1)

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Vision Res. (6)

J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15(8–9), 1005–1009 (1975).
[Crossref] [PubMed]

H. J. Morris, L. Blanco, J. L. Codona, S. Li, S. S. Choi, and N. Doble, “Directionality of individual cone photoreceptors in the parafoveal region,” Vision Res. 117, 69–80 (2015).
[Crossref]

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res. 35(9), 1217–1225 (1995).
[Crossref] [PubMed]

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008).
[Crossref] [PubMed]

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26(6), 847–855 (1986).
[Crossref] [PubMed]

Other (1)

B. Vohnsen, “The retina and the Stiles–Crawford effects,” chapter 18 in Handbook of Visual Optics, Vol. I, P. Artal, ed. (2017), pp. 257–276.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Normalized intersection volume between a light beam (blue cylinder) with a single and a group of 3 cylindrical cone OS (gray cylinder) of length 45 μm for foveal cones assuming 5% S-cones, 30% M-cones and 65% L-cones and a total density of σ = 160,000mm-2.
Fig. 2
Fig. 2 Normalized intersection volume between a light beam (blue cylinder) with a single cylindrical and tapered cone OS (gray cylinder) of length 35 μm for parafoveal cones assuming 5% S-cones, 30% M-cones and 65% L-cones and a total density of σ = 20,000mm−2.
Fig. 3
Fig. 3 Role of OS length (left) and diameter (right) in the calculation of the volumetric overlap between a single cylindrical beam of light and a cylindrical OS assuming green light with 30% M-cones and a foveal cone density of σ = 160,000 cones/mm2.
Fig. 4
Fig. 4 Schematic of the uniaxial flicker system using a DMD to characterize the monocular SCE-I equipped with a LED fixation point. Section a) shows the reference field impinging on the fovea, while b) represents an off-axis pupil entry position of the test field for a parafoveal retina measurement. The DMD, diffuser and eye’s pupil are placed at conjugate planes by a unit magnification 4-f system to create a Maxwellian view.
Fig. 5
Fig. 5 Psychophysical dependence of the SCE-I with brightness variation measured with 550 nm light at the fovea and at 5 degrees nasal retina for 4 emmetropic subjects, covering scotopic, mesopic and photopic luminance conditions. Error bars correspond to ± 1 S.D.
Fig. 6
Fig. 6 Plot of (a) the measured directionality parameters at the fovea against the wavelengths for 6 subjects and (b) the directionality variation with retinal eccentricity along the horizontal cross-section of the pupil for 8 subjects. The asterisk (*) denotes myopic participants. Error bars correspond to ± 1 S.D.
Fig. 7
Fig. 7 Directionality parameter against retinal eccentricity plots measured using a) 450 nm and b) 650 nm wavelength light for 5 emmetropic subjects including the authors. Error bars correspond to ± 1 S.D.
Fig. 8
Fig. 8 SCE-I characterization comparison between the normalized psychophysical experimental data and the theoretical plots based on the volumetric light absorption model of photoreceptors at a) the fovea with 45μm length cylindrical 2 μm outer segments, and b) parafoveal retina with 35 μm length tapered outer segments from 3 μm to 2 μm, for both authors AC and BV, and 450, 550 and 650 nm wavelengths. To ease comparison, curves at 550 and 650 nm have been vertically displaced 0.5 and 1 points, respectively. Error bars correspond to ± 1 S.D.

Tables (3)

Tables Icon

Table 1 Axial length and spherical refractive correction measured for the right eye of all subjects, including the authors AC and BV. The asterisk (*) denotes myopic subjects.

Tables Icon

Table 2 Luminous power measured at the optical system's exit pupil and corresponding luminance values.

Tables Icon

Table 3 SCE-I directionality parameter values measured at each wavelength and retinal eccentricity, and the corresponding percentage of reduction with respect to foveal values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η( r )= I ref / I test = 10 ρ( λ ) ( r r 0 ) 2
η eff 1 e αL  αL (αL) 2 2 + (αL) 3 6