Abstract

Cerebral oximetry based on near-infrared spectroscopy represents a unique noninvasive tool for real-time surgical monitoring, yet studies have shown a significant discrepancy in accuracy among commercial systems. Towards the establishment of a standardized method for performance testing, we have studied a solid phantom approach – based on a 3D-printed cerebrovascular module (CVM) incorporating an array of 148 cylindrical channels – that has several advantages over liquid phantoms. Development and characterization of a CVM prototype are described, including high-resolution imaging and spectrophotometry measurements. The CVM was filled with whole bovine blood tuned over an oxygen saturation range of 30-90% and molded-silicone layers simulating extracerebral tissues were used to evaluate penetration depth. Saturation measurement accuracy was assessed in two commercially-available clinical cerebral oximeters. For one oximeter, both neonatal and pediatric sensors showed a high degree of precision, whereas accuracy was strongly dependent on saturation level and extracerebral geometry. The second oximeter showed worse precision, yet greater robustness to variations in extracerebral layers. These results indicate that 3D-printed channel array phantoms represent a promising new approach for standardized testing of clinical oximeters.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation

William C. Vogt, Xuewen Zhou, Rudy Andriani, Keith A. Wear, T. Joshua Pfefer, and Brian S. Garra
Biomed. Opt. Express 10(2) 449-464 (2019)

Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

Simon Hyttel-Sorensen, Stefan Kleiser, Martin Wolf, and Gorm Greisen
Biomed. Opt. Express 4(9) 1662-1672 (2013)

Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf
Biomed. Opt. Express 9(1) 86-101 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
    [Crossref] [PubMed]
  2. G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
    [Crossref] [PubMed]
  3. J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).
    [Crossref] [PubMed]
  4. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
    [Crossref] [PubMed]
  5. F. A. Desmond and S. Namachivayam, “Does near-infrared spectroscopy play a role in paediatric intensive care?” BJA Educ. 16(8), 281–285 (2016).
    [Crossref]
  6. Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
    [Crossref] [PubMed]
  7. T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
    [Crossref] [PubMed]
  8. K. T. S. Pattinson, C. H. E. Imray, and A. D. Wright, “What does cerebral oximetry measure?” Br. J. Anaesth. 94(6), 863–864(2005).
    [Crossref] [PubMed]
  9. L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
    [Crossref] [PubMed]
  10. P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117(4), 813–823 (2013).
    [Crossref] [PubMed]
  11. G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
    [Crossref] [PubMed]
  12. A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
    [PubMed]
  13. C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
    [Crossref] [PubMed]
  14. S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116(4), 834–840 (2012).
    [Crossref] [PubMed]
  15. H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
    [Crossref] [PubMed]
  16. A. I. R. Maas and G. Citerio, “Noninvasive monitoring of cerebral oxygenation in traumatic brain injury: a mix of doubts and hope,” Intensive Care Med. 36(8), 1283–1285 (2010).
    [Crossref] [PubMed]
  17. R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
    [Crossref] [PubMed]
  18. S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
    [Crossref] [PubMed]
  19. C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
    [Crossref] [PubMed]
  20. J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE 8215, 1–10 (2012).
    [Crossref]
  21. T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
    [Crossref] [PubMed]
  22. F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
    [Crossref] [PubMed]
  23. D. Ostojic, S. Kleiser, N. Nasseri, H. Isler, B. Andresen, H. Wabnitz, T. Karen, F. Scholkmann, and M. Wolf, “In vitro comparisons of near-infrared spectroscopy oximeters: impact of slow changes in scattering of liquid phantoms,” in Oxygen Transport to Tissue XL, O. Thews, J. C. LaManna, and D. K. Harrison, eds. Adv Exp Med Biol (2018), pp 375–379.
  24. C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
    [Crossref] [PubMed]
  25. A. Hussain, W. Petersen, J. Staley, E. Hondebrink, and W. Steenbergen, “Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics,” Opt. Lett. 41(8), 1720–1723 (2016).
    [Crossref] [PubMed]
  26. S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
    [Crossref] [PubMed]
  27. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
    [Crossref]
  28. N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7(11), 4605–4619 (2016).
    [Crossref] [PubMed]
  29. S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension,” Biomed. Opt. Express 9(1), 86–101 (2018).
    [Crossref] [PubMed]
  30. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J. P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H. C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  31. J. Wang, J. Coburn, C.-P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett. 39(10), 3010–3013 (2014).
    [Crossref] [PubMed]
  32. P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
    [Crossref] [PubMed]
  33. Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3D-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
    [Crossref] [PubMed]
  34. B. Z. Bentz, A. G. Bowen, D. Lin, D. Ysselstein, D. H. Huston, J.-C. Rochet, and K. J. Webb, “Printed optics: phantoms for quantitative deep tissue fluorescence imaging,” Opt. Lett. 41(22), 5230–5233 (2016).
    [Crossref] [PubMed]
  35. G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
    [Crossref] [PubMed]
  36. S. S. Margulies and K. L. Thibault, “Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury,” J. Biomech. Eng. 122(4), 364–371 (2000).
    [Crossref] [PubMed]
  37. A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
    [Crossref] [PubMed]
  38. C. D. Kurth and W. S. Thayer, “A multiwavelength frequency-domain near-infrared cerebral oximeter,” Phys. Med. Biol. 44(3), 727–740 (1999).
    [Crossref] [PubMed]
  39. L. Giacometti, “Facts, legends, and myths about the scalp throughout history,” Arch. Dermatol. 95(6), 629–631 (1967).
    [Crossref] [PubMed]
  40. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42(16), 2906–2914 (2003).
    [Crossref] [PubMed]
  41. P. Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
    [Crossref]
  42. P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
    [Crossref] [PubMed]
  43. S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
    [Crossref] [PubMed]
  44. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref] [PubMed]
  45. A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
    [Crossref] [PubMed]
  46. S. A. Prahl, “The Adding-Doubling Method,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. Van Gemert, eds. (Springer US, Boston, MA, 1995), pp. 101–129.
  47. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
    [Crossref] [PubMed]
  48. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
    [Crossref] [PubMed]
  49. W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Biochem. Mol. Biol. J. 118(4), 743–749 (1997).
    [Crossref]
  50. S. J. Barker, K. K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
    [Crossref] [PubMed]
  51. ISO 80601, “Medical electrical equipment–Part 2-61: Particular requirements for basic safety and essential performance of pulse oximeter equipment,” (2017 updated).
  52. S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28(2), 149–155 (2014).
    [Crossref] [PubMed]
  53. A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
    [Crossref] [PubMed]
  54. T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters,” Acta Paediatr. 103(5), 488–493 (2014).
    [Crossref] [PubMed]
  55. B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS One 8(5), e64095 (2013).
    [Crossref] [PubMed]
  56. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37(31), 7447–7458 (1998).
    [Crossref] [PubMed]
  57. W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
    [Crossref] [PubMed]
  58. A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
    [Crossref] [PubMed]

2018 (5)

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension,” Biomed. Opt. Express 9(1), 86–101 (2018).
[Crossref] [PubMed]

Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3D-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
[Crossref] [PubMed]

G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
[Crossref] [PubMed]

2017 (2)

C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
[Crossref] [PubMed]

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (2)

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

2014 (8)

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28(2), 149–155 (2014).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters,” Acta Paediatr. 103(5), 488–493 (2014).
[Crossref] [PubMed]

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J. P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H. C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

J. Wang, J. Coburn, C.-P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett. 39(10), 3010–3013 (2014).
[Crossref] [PubMed]

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

2013 (4)

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
[Crossref] [PubMed]

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[Crossref] [PubMed]

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117(4), 813–823 (2013).
[Crossref] [PubMed]

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS One 8(5), e64095 (2013).
[Crossref] [PubMed]

2012 (4)

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116(4), 834–840 (2012).
[Crossref] [PubMed]

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE 8215, 1–10 (2012).
[Crossref]

2010 (1)

A. I. R. Maas and G. Citerio, “Noninvasive monitoring of cerebral oxygenation in traumatic brain injury: a mix of doubts and hope,” Intensive Care Med. 36(8), 1283–1285 (2010).
[Crossref] [PubMed]

2009 (1)

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).
[Crossref] [PubMed]

2008 (1)

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

2007 (2)

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

2006 (1)

S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref] [PubMed]

2005 (2)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

K. T. S. Pattinson, C. H. E. Imray, and A. D. Wright, “What does cerebral oximetry measure?” Br. J. Anaesth. 94(6), 863–864(2005).
[Crossref] [PubMed]

2004 (1)

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

2001 (1)

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

2000 (2)

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

S. S. Margulies and K. L. Thibault, “Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury,” J. Biomech. Eng. 122(4), 364–371 (2000).
[Crossref] [PubMed]

1999 (4)

C. D. Kurth and W. S. Thayer, “A multiwavelength frequency-domain near-infrared cerebral oximeter,” Phys. Med. Biol. 44(3), 727–740 (1999).
[Crossref] [PubMed]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Biochem. Mol. Biol. J. 118(4), 743–749 (1997).
[Crossref]

1995 (1)

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
[Crossref] [PubMed]

1994 (1)

T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
[Crossref] [PubMed]

1993 (1)

P. Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

1989 (1)

S. J. Barker, K. K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

1967 (1)

L. Giacometti, “Facts, legends, and myths about the scalp throughout history,” Arch. Dermatol. 95(6), 629–631 (1967).
[Crossref] [PubMed]

Agrawal, A.

J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE 8215, 1–10 (2012).
[Crossref]

Allen, D. W.

Ames, W. A.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Andersson-Engels, S.

Andresen, B.

Angelone, M.

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

Baerts, W.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[Crossref] [PubMed]

Bargigia, I.

Baribeau, F.

Barker, S. J.

S. J. Barker, K. K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Barnett, N. J.

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

Bénazech-Lavoué, M.

Bentz, B. Z.

Berggreen, A. E.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Bérubé-Lauzière, Y.

Bevilacqua, F.

Bickler, P. E.

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117(4), 813–823 (2013).
[Crossref] [PubMed]

Bodnar, O.

Botwicz, M.

Bouchard, J. P.

Bowen, A. G.

Brandt, S.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Buckley, E. M.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Bucsky, B.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Buursma, A.

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Biochem. Mol. Biol. J. 118(4), 743–749 (1997).
[Crossref]

Carp, S. A.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Casaer, P.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Chance, B.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
[Crossref] [PubMed]

Charitos, E. I.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Chen, Y.

Choi, J.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Citerio, G.

A. I. R. Maas and G. Citerio, “Noninvasive monitoring of cerebral oxygenation in traumatic brain injury: a mix of doubts and hope,” Intensive Care Med. 36(8), 1283–1285 (2010).
[Crossref] [PubMed]

Coburn, J.

Coburn, J. C.

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

Contini, D.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

Corcione, A.

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

Cubeddu, R.

Davie, S. N.

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116(4), 834–840 (2012).
[Crossref] [PubMed]

Delpy, D. T.

Demel, A.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

Depeursinge, C.

Depkon, A.

Desmond, F. A.

F. A. Desmond and S. Namachivayam, “Does near-infrared spectroscopy play a role in paediatric intensive care?” BJA Educ. 16(8), 281–285 (2016).
[Crossref]

Devlieger, H.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Di Ninni, P.

Dix, L. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[Crossref] [PubMed]

Dong, E.

Durduran, T.

Ehrlich, M.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Elster, C.

Essenpreis, M.

P. Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

Fantini, S.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS One 8(5), e64095 (2013).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37(31), 7447–7458 (1998).
[Crossref] [PubMed]

Farina, A.

Farzam, P.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Feilke, K.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

Feiner, J. R.

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117(4), 813–823 (2013).
[Crossref] [PubMed]

Feng, W.

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

Fenghua, T.

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

Foschum, F.

Franceschini, M. A.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37(31), 7447–7458 (1998).
[Crossref] [PubMed]

Franz, A. R.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

Fugger, O.

Galdieri, N.

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

Gallant, P.

Gebhart, S. C.

S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref] [PubMed]

Germon, T. J.

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
[Crossref] [PubMed]

Ghassemi, P.

Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3D-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
[Crossref] [PubMed]

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

Giacometti, L.

L. Giacometti, “Facts, legends, and myths about the scalp throughout history,” Arch. Dermatol. 95(6), 629–631 (1967).
[Crossref] [PubMed]

Glatz, A. C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Grant, P. E.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Gratton, E.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37(31), 7447–7458 (1998).
[Crossref] [PubMed]

Greisen, G.

Grocott, H. P.

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116(4), 834–840 (2012).
[Crossref] [PubMed]

Gross, J. D.

Grubhofer, G.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Gupta, R.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Hagan, K.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Haishu, D.

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

Hallacoglu, B.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS One 8(5), e64095 (2013).
[Crossref] [PubMed]

Han, R.

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Hattinger-Jürgenssen, E.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

Heringlake, M.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Hessel, T. W.

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters,” Acta Paediatr. 103(5), 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28(2), 149–155 (2014).
[Crossref] [PubMed]

Hiesmayr, M.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Hill, K. D.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Hirao, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Hirsch, R.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Ho, H. C.

Hoffman, J.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Hofstätter, E.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

Hondebrink, E.

Huang, K.

Hueber, D.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Hunter, C. L.

C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
[Crossref] [PubMed]

Hussain, A.

Huston, D. H.

Hyatt, J.

S. J. Barker, K. K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Hyttel-Sorensen, S.

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28(2), 149–155 (2014).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters,” Acta Paediatr. 103(5), 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
[Crossref] [PubMed]

Iacono, M. I.

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Imray, C. H. E.

K. T. S. Pattinson, C. H. E. Imray, and A. D. Wright, “What does cerebral oximetry measure?” Br. J. Anaesth. 94(6), 863–864(2005).
[Crossref] [PubMed]

Inder, T. E.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Iovino, T. P.

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

Isler, H.

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Jäger, M.

Jia, Q.

Jun, Z.

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

Kacprzak, M.

Kane, N. M.

T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
[Crossref] [PubMed]

Karen, T.

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Kellner, P.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Keznickl, P.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Khoptyar, D.

Kienle, A.

Klauenberg, K.

Kleiser, S.

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Kohl-Bareis, M.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Kondo, M.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Kreeger, R. N.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Kurth, C. D.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

C. D. Kurth and W. S. Thayer, “A multiwavelength frequency-domain near-infrared cerebral oximeter,” Phys. Med. Biol. 44(3), 727–740 (1999).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
[Crossref] [PubMed]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Lassnigg, A.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Leclair, S.

Lemaillet, P.

Lemmers, P.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Lemmers, P. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[Crossref] [PubMed]

Lesage, F.

Leunens, V.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Li, J.

Liang, C.-P.

Liebert, A.

Lin, D.

Lin, J.

Lin, P.-Y.

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Lin, W. C.

S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref] [PubMed]

Liu, G.

Liu, H.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
[Crossref] [PubMed]

Liu, S.

Liu, Y.

Lui, K.

C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
[Crossref] [PubMed]

Lundby, C.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Maas, A. I. R.

A. I. R. Maas and G. Citerio, “Noninvasive monitoring of cerebral oxygenation in traumatic brain injury: a mix of doubts and hope,” Intensive Care Med. 36(8), 1283–1285 (2010).
[Crossref] [PubMed]

Macdonald, R.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref] [PubMed]

Maier, J. S.

Manara, A. R.

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
[Crossref] [PubMed]

Mantulin, W.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Margulies, S. S.

S. S. Margulies and K. L. Thibault, “Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury,” J. Biomech. Eng. 122(4), 364–371 (2000).
[Crossref] [PubMed]

Marquet, P.

Martelli, F.

Mathews, S. A.

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

Maurer, H.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Mazurenka, M.

Melchiorri, A. J.

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

Mendoza, G.

Meng, L.

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Mermut, O.

Meyns, B.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Michalos, A.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Milej, D.

Minnich, B.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

Miserez, M.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Nagano, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Namachivayam, S.

F. A. Desmond and S. Namachivayam, “Does near-infrared spectroscopy play a role in paediatric intensive care?” BJA Educ. 16(8), 281–285 (2016).
[Crossref]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Nasseri, N.

Naulaers, G.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Nelson, R. J.

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
[Crossref] [PubMed]

Nicolson, S. C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Nielsen, H. B.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Noiseux, I.

Oei, J. L.

C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
[Crossref] [PubMed]

Okada, E.

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Onishi, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Ostojic, D.

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Pattinson, K. T. S.

K. T. S. Pattinson, C. H. E. Imray, and A. D. Wright, “What does cerebral oximetry measure?” Br. J. Anaesth. 94(6), 863–864(2005).
[Crossref] [PubMed]

Paunescu, L. A.

Peng, L. F.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Petersen, M.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Petersen, W.

Pfefer, J.

J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE 8215, 1–10 (2012).
[Crossref]

Pfefer, T. J.

Pifferi, A.

Piguet, D.

Pisano, A.

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

Poets, C. F.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

Polzonetti, C.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Qing, X.

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

Ramamoorthy, C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Ramella-Roman, J. C.

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

J. Wang, J. Coburn, C.-P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett. 39(10), 3010–3013 (2014).
[Crossref] [PubMed]

Rasmussen, P.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Rochet, J.-C.

Rollins, M. D.

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117(4), 813–823 (2013).
[Crossref] [PubMed]

Safonova, L. P.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Sassaroli, A.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS One 8(5), e64095 (2013).
[Crossref] [PubMed]

Sawosz, P.

Schindler, T.

C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
[Crossref] [PubMed]

Schmidt, C.

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Schneider, A.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

Scholkmann, F.

Secher, N. H.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Shen, S.

Siebenmann, C.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Simon, E.

Skyllouriotis, P.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Sørensen, H.

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

Sorg, B. S.

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

Spinelli, L.

Staley, J.

Steenbergen, W.

Subash, A. A.

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Tang, Q.

Thayer, W. S.

C. D. Kurth and W. S. Thayer, “A multiwavelength frequency-domain near-infrared cerebral oximeter,” Phys. Med. Biol. 44(3), 727–740 (1999).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
[Crossref] [PubMed]

Thibault, K. L.

S. S. Margulies and K. L. Thibault, “Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury,” J. Biomech. Eng. 122(4), 364–371 (2000).
[Crossref] [PubMed]

Tomasson, J.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Tonninger, W.

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Toronov, V.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Torricelli, A.

Tremper, K. K.

S. J. Barker, K. K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Tromberg, B. J.

van Bel, F.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[Crossref] [PubMed]

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Van Huffel, S.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Volpe, J. J.

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).
[Crossref] [PubMed]

Wabnitz, H.

Wald, M.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

Wang, J.

Webb, K. J.

Weigel, U.

Weindling, M.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Weisser, C.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

Wolf, M.

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension,” Biomed. Opt. Express 9(1), 86–101 (2018).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7(11), 4605–4619 (2016).
[Crossref] [PubMed]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
[Crossref] [PubMed]

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
[Crossref] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Wolf, U.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

Woolsey, N.

Wright, A. D.

K. T. S. Pattinson, C. H. E. Imray, and A. D. Wright, “What does cerebral oximetry measure?” Br. J. Anaesth. 94(6), 863–864(2005).
[Crossref] [PubMed]

Xianwu, T.

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

Xu, R. X.

Yasuda, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Young, A. E.

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

Ysselstein, D.

Yu, Y.

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Zaccanti, G.

Zee, P.

P. Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

Zhang, K.

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Zhang, L.

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Biochem. Mol. Biol. J. 118(4), 743–749 (1997).
[Crossref]

Zolek, N.

Zong, H.

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Acta Anaesthesiol. Scand. (1)

G. Grubhofer, W. Tonninger, P. Keznickl, P. Skyllouriotis, M. Ehrlich, M. Hiesmayr, and A. Lassnigg, “A comparison of the monitors INVOS 3100 and NIRO 500 in detecting changes in cerebral oxygenation,” Acta Anaesthesiol. Scand. 43(4), 470–475 (1999).
[Crossref] [PubMed]

Acta Paediatr. (3)

C. L. Hunter, J. L. Oei, K. Lui, and T. Schindler, “Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation,” Acta Paediatr. 106(7), 1073–1078 (2017).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103(9), 934–938 (2014).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters,” Acta Paediatr. 103(5), 488–493 (2014).
[Crossref] [PubMed]

Anesth. Analg. (1)

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117(4), 813–823 (2013).
[Crossref] [PubMed]

Anesthesiology (3)

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116(4), 834–840 (2012).
[Crossref] [PubMed]

H. Sørensen, N. H. Secher, C. Siebenmann, H. B. Nielsen, M. Kohl-Bareis, C. Lundby, and P. Rasmussen, “Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine,” Anesthesiology 117(2), 263–270 (2012).
[Crossref] [PubMed]

S. J. Barker, K. K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Ann. Thorac. Surg. (1)

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94(5), 1527–1533 (2012).
[Crossref] [PubMed]

Appl. Opt. (4)

Arch. Dermatol. (1)

L. Giacometti, “Facts, legends, and myths about the scalp throughout history,” Arch. Dermatol. 95(6), 629–631 (1967).
[Crossref] [PubMed]

Biochem. Mol. Biol. J. (1)

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Biochem. Mol. Biol. J. 118(4), 743–749 (1997).
[Crossref]

Biomed. Opt. Express (7)

Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3D-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7(11), 4605–4619 (2016).
[Crossref] [PubMed]

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension,” Biomed. Opt. Express 9(1), 86–101 (2018).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J. P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H. C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4(9), 1662–1672 (2013).
[Crossref] [PubMed]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
[Crossref] [PubMed]

BJA Educ. (1)

F. A. Desmond and S. Namachivayam, “Does near-infrared spectroscopy play a role in paediatric intensive care?” BJA Educ. 16(8), 281–285 (2016).
[Crossref]

Br. J. Anaesth. (3)

T. J. Germon, N. M. Kane, A. R. Manara, and R. J. Nelson, “Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation,” Br. J. Anaesth. 73(4), 503–506 (1994).
[Crossref] [PubMed]

K. T. S. Pattinson, C. H. E. Imray, and A. D. Wright, “What does cerebral oximetry measure?” Br. J. Anaesth. 94(6), 863–864(2005).
[Crossref] [PubMed]

A. E. Young, T. J. Germon, N. J. Barnett, A. R. Manara, and R. J. Nelson, “Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy,” Br. J. Anaesth. 84(1), 38–42 (2000).
[Crossref] [PubMed]

Can. J. Anaesth. (1)

C. Schmidt, M. Heringlake, P. Kellner, A. E. Berggreen, H. Maurer, S. Brandt, B. Bucsky, M. Petersen, and E. I. Charitos, “The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters,” Can. J. Anaesth. 65(7), 766–775 (2018).
[Crossref] [PubMed]

Cochrane Database Syst. Rev. (1)

Y. Yu, K. Zhang, L. Zhang, H. Zong, L. Meng, and R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults,” Cochrane Database Syst. Rev. 1, CD010947 (2018).
[Crossref] [PubMed]

Comp. Biochem. Physiol. A Mol. Integr. Physiol. (1)

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 121–132 (2002).
[Crossref] [PubMed]

Heart Lung Vessel. (1)

A. Pisano, N. Galdieri, T. P. Iovino, M. Angelone, and A. Corcione, “Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study,” Heart Lung Vessel. 6(3), 197–203 (2014).
[PubMed]

Intensive Care Med. (1)

A. I. R. Maas and G. Citerio, “Noninvasive monitoring of cerebral oxygenation in traumatic brain injury: a mix of doubts and hope,” Intensive Care Med. 36(8), 1283–1285 (2010).
[Crossref] [PubMed]

J. Biomech. Eng. (1)

S. S. Margulies and K. L. Thibault, “Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury,” J. Biomech. Eng. 122(4), 364–371 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19(1), 017004 (2014).
[Crossref] [PubMed]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

P. Ghassemi, J. Wang, A. J. Melchiorri, J. C. Ramella-Roman, S. A. Mathews, J. C. Coburn, B. S. Sorg, Y. Chen, and T. J. Pfefer, “Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging,” J. Biomed. Opt. 20(12), 121312 (2015).
[Crossref] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[Crossref] [PubMed]

J. Clin. Monit. Comput. (1)

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28(2), 149–155 (2014).
[Crossref] [PubMed]

Lancet Neurol. (1)

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).
[Crossref] [PubMed]

Neonatology (2)

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Opt. Lett. (3)

Pediatr. Res. (2)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

C. D. Kurth and W. S. Thayer, “A multiwavelength frequency-domain near-infrared cerebral oximeter,” Phys. Med. Biol. 44(3), 727–740 (1999).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40(12), 2079–2092 (1995).
[Crossref] [PubMed]

S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref] [PubMed]

Physiol. Meas. (1)

W. Feng, D. Haishu, T. Fenghua, Z. Jun, X. Qing, and T. Xianwu, “Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter,” Physiol. Meas. 22(1), 201–208 (2001).
[Crossref] [PubMed]

PLoS One (1)

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS One 8(5), e64095 (2013).
[Crossref] [PubMed]

Proc. SPIE (3)

P. Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE 8215, 1–10 (2012).
[Crossref]

Sci. Rep. (1)

P. Farzam, E. M. Buckley, P.-Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Other (3)

S. A. Prahl, “The Adding-Doubling Method,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. Van Gemert, eds. (Springer US, Boston, MA, 1995), pp. 101–129.

ISO 80601, “Medical electrical equipment–Part 2-61: Particular requirements for basic safety and essential performance of pulse oximeter equipment,” (2017 updated).

D. Ostojic, S. Kleiser, N. Nasseri, H. Isler, B. Andresen, H. Wabnitz, T. Karen, F. Scholkmann, and M. Wolf, “In vitro comparisons of near-infrared spectroscopy oximeters: impact of slow changes in scattering of liquid phantoms,” in Oxygen Transport to Tissue XL, O. Thews, J. C. LaManna, and D. K. Harrison, eds. Adv Exp Med Biol (2018), pp 375–379.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of modular cerebral oximetry phantom (left) with layer thicknesses noted; right: Design of CVM from STL file used for 3D printing. Perfused channel-array region had dimensions of 120 x 80 x 32.5 mm.
Fig. 2
Fig. 2 (a) Reduced scattering and (b) absorption spectra of cured resin used to form channel-array modules, along with tissue optical property data from the literature (dashed lines).
Fig. 3
Fig. 3 Evaluation of 3D-printed test sample: (top left) photo of sample with ink-filled channels; (bottom left) µCT image of sample showing blockages in smaller channels, and (right) comparison of nominal vs. actual channel diameters, with blocked channels assigned a 0 mm diameter.
Fig. 4
Fig. 4 Optical properties of (a) scalp/skull and (b) cerebrospinal fluid (CSF) simulating layers. Scalp/skull values are graphed with relevant tissue optical property data from the literature.
Fig. 5
Fig. 5 Photos of the CVM) with 1 mm scalp/skull layer, NIRS probe placed on the top of channel area regarding Oximeter A - neo (left), Oximeter A - ped (center) and Oximeter B (right)
Fig. 6
Fig. 6 Relationship between sodium dithionite concentration and StO2 level measured by CO-oximeter.
Fig. 7
Fig. 7 NIR images of sensors for Oximeters A - neo (left), A- ped (center) and Oximeter B (right) in use on the top surface of the phantom.
Fig. 8
Fig. 8 Results from Oximeter A - neo for (a) TL2 = 0 mm (no CSF layer), (b) TL2 = 1 mm and (c) TL2 = 2.5 mm. Variables TL1 and TL2 represent scalp/skull and CSF layer thickness, respectively. Note that in the CVM, the first row of channels is 0.8 mm below the module surface. Error bars denote one standard deviation.
Fig. 9
Fig. 9 Results from Oximeter A pediatric sensor for (a) TL2 = 0 mm, (b) TL2 = 1 mm, and (c) TL2 = 2.5 mm, where TL1 and TL2 represent scalp/skull and CSF layer thickness, respectively. Error bars denote one standard deviation.
Fig. 10
Fig. 10 Results from Oximeter B neonatal sensor for (a) TL2 = 0 mm, (b) TL2 = 1 mm and (c) TL2 = 2.5 mm, where TL1 and TL2 represent scalp/skull and CSF layer thickness, respectively. Error bars denote one standard deviation.
Fig. 11
Fig. 11 Comparison of our solid phantom measurements with selected data from a prior liquid phantom study (19, 28). ctHb in our channel array phantom was 54 µM and in the cited research were (a) 47.5 and 75 µM and (b) 45 and 70 µM. Superficial layer thickness for all measurements was 2.5 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A rms = i=1 n (St O 2i - S R O 2i ) 2 n ,
s res = i=1 n (St O 2i -St O 2,fit,i ) 2 (n-2) ,

Metrics