Abstract

We demonstrate a swept source OCT-based ocular biometer integrated with an air-puff stimulus to study the reaction of the eye to mechanical stimulation in vivo. The system enables simultaneous measurement of the stimulus strength and high-speed imaging of the eye dynamics along the visual axis. We characterize the stimulus and perform optimization of the data acquisition for a proper interpretation of the results. Access to the dynamics of axial eye length allows for a determination of the eye retraction, which is used to correct the air-puff induced displacement of ocular structures. We define the parameters to quantify the reaction of the eye to the air puff and determine their reproducibility in a group of healthy subjects. We observe the corneal deformation process and axial wobbling of the crystalline lens. OCT biometer combined with the air puff is the first instrument with the potential to provide comprehensive information on the biomechanics of ocular components.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system

David Alonso-Caneiro, Karol Karnowski, Bartlomiej J. Kaluzny, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 19(15) 14188-14199 (2011)

Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas

Carlos Dorronsoro, Daniel Pascual, Pablo Pérez-Merino, Sabine Kling, and Susana Marcos
Biomed. Opt. Express 3(3) 473-487 (2012)

Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range

Michalina Gora, Karol Karnowski, Maciej Szkulmowski, Bartlomiej J. Kaluzny, Robert Huber, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 17(17) 14880-14894 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99(2), 99–106 (2016).
    [Crossref] [PubMed]
  2. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
    [Crossref]
  3. A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
    [Crossref] [PubMed]
  4. C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular Biomechanics and Biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).
    [Crossref] [PubMed]
  5. I. A. Sigal and C. R. Ethier, “Biomechanics of the optic nerve head,” Exp. Eye Res. 88(4), 799–807 (2009).
    [Crossref] [PubMed]
  6. I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
    [Crossref] [PubMed]
  7. C. J. Roberts and J. Liu, eds., Corneal Biomechanics: From Theory to Practice (Kugler Publications, Ansterdam, 2016), pp. 300.
  8. A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
    [Crossref] [PubMed]
  9. S. Kling and F. Hafezi, “Corneal biomechanics - a review,” Ophthalmic Physiol. Opt. 37(3), 240–252 (2017).
    [Crossref] [PubMed]
  10. R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
    [Crossref] [PubMed]
  11. A. Boszczyk, H. Kasprzak, and A. Jóźwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthalmic Physiol. Opt. 37(3), 253–262 (2017).
    [Crossref] [PubMed]
  12. M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
    [PubMed]
  13. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31(1), 156–162 (2005).
    [Crossref] [PubMed]
  14. S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
    [Crossref] [PubMed]
  15. A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
    [Crossref] [PubMed]
  16. J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
    [Crossref] [PubMed]
  17. C. K.-S. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
    [Crossref] [PubMed]
  18. R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
    [Crossref] [PubMed]
  19. R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13(1), 150 (2014).
    [Crossref] [PubMed]
  20. A. Boszczyk, H. Kasprzak, and D. Siedlecki, “Non-contact tonometry using Corvis ST: analysis of corneal vibrations and their relation with intraocular pressure,” J. Opt. Soc. Am. A 36(4), B28–B34 (2019).
    [Crossref] [PubMed]
  21. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  22. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
    [Crossref] [PubMed]
  23. J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
    [Crossref] [PubMed]
  24. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  25. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [Crossref] [PubMed]
  26. I. Grulkowski, “Anterior segment OCT,” in Handbook of Visual Optics, Volume Two: Instrumentation and Vision P. Artal, ed. (CRC Press - Taylor & Francis Group, 2017), pp. 61–90.
  27. M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
    [Crossref] [PubMed]
  28. A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
    [Crossref]
  29. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  30. I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
    [Crossref] [PubMed]
  31. S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
    [Crossref] [PubMed]
  32. K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
    [Crossref] [PubMed]
  33. P. Kongsap, “Comparison of a new optical biometer and a standard biometer in cataract patients,” Eye Vis. (Lond.) 3(1), 27 (2016).
    [Crossref] [PubMed]
  34. J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
    [Crossref] [PubMed]
  35. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
    [Crossref] [PubMed]
  36. C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012).
    [Crossref] [PubMed]
  37. E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
    [Crossref] [PubMed]
  38. B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
    [Crossref] [PubMed]
  39. J. Birkenfeld, A. Ramier, B. Tavakol, S. Marcos, and S.-H. Yun, “Assessment of ocular mechanical resonances using phase-sensitive OCT and frequency-domain air puff stimulation,” manuscript in preparation (2019).
  40. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  41. S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
    [Crossref] [PubMed]
  42. C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
    [Crossref]
  43. M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
    [Crossref] [PubMed]
  44. C. J. Roberts, A. M. Mahmoud, K. A. V. Mendoza, and R. J. Ambrósio, “Interpreting dynamic corneal response parameters of the Corvis ST,” in Corneal Biomechanics: From Theory to Practice, C. J. Roberts and J. Liu, eds. (Kugler Publications, 2016), pp. 165–182.
  45. E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
    [Crossref] [PubMed]
  46. M. Wojtkowski, E. Mączyńska, B. Kałużny, and I. Grulkowski, “Air-puff Swept-Source Optical Coherence Tomography,” in Frontiers in Optics 2016, (Optical Society of America, 2016), FTh4H.1.

2019 (4)

A. Boszczyk, H. Kasprzak, and D. Siedlecki, “Non-contact tonometry using Corvis ST: analysis of corneal vibrations and their relation with intraocular pressure,” J. Opt. Soc. Am. A 36(4), B28–B34 (2019).
[Crossref] [PubMed]

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

2018 (3)

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

2017 (6)

A. Boszczyk, H. Kasprzak, and A. Jóźwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthalmic Physiol. Opt. 37(3), 253–262 (2017).
[Crossref] [PubMed]

S. Kling and F. Hafezi, “Corneal biomechanics - a review,” Ophthalmic Physiol. Opt. 37(3), 240–252 (2017).
[Crossref] [PubMed]

J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
[Crossref] [PubMed]

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

2016 (4)

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

P. Kongsap, “Comparison of a new optical biometer and a standard biometer in cataract patients,” Eye Vis. (Lond.) 3(1), 27 (2016).
[Crossref] [PubMed]

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99(2), 99–106 (2016).
[Crossref] [PubMed]

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

2015 (4)

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
[Crossref] [PubMed]

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[Crossref] [PubMed]

2014 (4)

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref] [PubMed]

R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13(1), 150 (2014).
[Crossref] [PubMed]

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

2013 (4)

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

C. K.-S. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

2009 (3)

2007 (1)

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
[Crossref] [PubMed]

2006 (1)

S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
[Crossref] [PubMed]

2005 (1)

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31(1), 156–162 (2005).
[Crossref] [PubMed]

2004 (1)

C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular Biomechanics and Biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aglyamov, S. R.

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

Aihara, M.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Akca, B. I.

Alonso-Caneiro, D.

Ambrósio, R.

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

Ambrozinski, L.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Ang, M.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Aranha Dos Santos, V.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Arianpour, A.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Artal, P.

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

Asaoka, R.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99(2), 99–106 (2016).
[Crossref] [PubMed]

Bak-Nielsen, S.

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

Baskaran, M.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Behrouz, M. J.

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

Blum, M.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Boszczyk, A.

A. Boszczyk, H. Kasprzak, and D. Siedlecki, “Non-contact tonometry using Corvis ST: analysis of corneal vibrations and their relation with intraocular pressure,” J. Opt. Soc. Am. A 36(4), B28–B34 (2019).
[Crossref] [PubMed]

A. Boszczyk, H. Kasprzak, and A. Jóźwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthalmic Physiol. Opt. 37(3), 253–262 (2017).
[Crossref] [PubMed]

Büehren, T.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Cable, A. E.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Chang, E. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Chen, Z.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Chirapapaisan, C.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
[Crossref] [PubMed]

Chonpimai, P.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
[Crossref] [PubMed]

Chua, J.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Cichanski, A.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

Cui, X.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Cunliffe, I.

S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
[Crossref] [PubMed]

de Boer, J. F.

Deng, S. X.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Dolezyczek, H.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

Dorronsoro, C.

Duker, J. S.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Ethier, C. R.

I. A. Sigal and C. R. Ethier, “Biomechanics of the optic nerve head,” Exp. Eye Res. 88(4), 799–807 (2009).
[Crossref] [PubMed]

C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular Biomechanics and Biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).
[Crossref] [PubMed]

Faria-Correia, F.

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ford, J. E.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gao, L.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Gao, R.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Garhöfer, G.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Gora, M.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grulkowski, I.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

Hafezi, F.

S. Kling and F. Hafezi, “Corneal biomechanics - a review,” Ophthalmic Physiol. Opt. 37(3), 240–252 (2017).
[Crossref] [PubMed]

Haigis, W.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Han, Z.

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hjortdal, J.

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

Hong, J.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, J.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Huber, R.

Ihara, N.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Ivarsen, A.

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

Jannesari, M.

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

Jayaraman, V.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Jiang, J.

Jimenez Villar, A.

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

Johnson, M.

C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular Biomechanics and Biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).
[Crossref] [PubMed]

Józwik, A.

A. Boszczyk, H. Kasprzak, and A. Jóźwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthalmic Physiol. Opt. 37(3), 253–262 (2017).
[Crossref] [PubMed]

Kadkhodaei, M.

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

Kaluzny, B.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Kasprzak, H.

A. Boszczyk, H. Kasprzak, and D. Siedlecki, “Non-contact tonometry using Corvis ST: analysis of corneal vibrations and their relation with intraocular pressure,” J. Opt. Soc. Am. A 36(4), B28–B34 (2019).
[Crossref] [PubMed]

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

A. Boszczyk, H. Kasprzak, and A. Jóźwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthalmic Physiol. Opt. 37(3), 253–262 (2017).
[Crossref] [PubMed]

Kirby, M. A.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Kiuchi, Y.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Kling, S.

Kongsap, P.

P. Kongsap, “Comparison of a new optical biometer and a standard biometer in cataract patients,” Eye Vis. (Lond.) 3(1), 27 (2016).
[Crossref] [PubMed]

Koprowski, R.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13(1), 150 (2014).
[Crossref] [PubMed]

Kotecha, A.

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
[Crossref] [PubMed]

Kowalczyk, A.

Kunert, K. S.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Laiquzzaman, M.

S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
[Crossref] [PubMed]

Larin, K. V.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref] [PubMed]

Leitgeb, R.

Leung, C. K.-S.

C. K.-S. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

Li, D.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Li, Y.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, C. H.

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

Liu, J. J.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Lo, Y.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Loket, S.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
[Crossref] [PubMed]

Lopes, B. T.

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

Lu, C. D.

Lu, W.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Luce, D. A.

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31(1), 156–162 (2005).
[Crossref] [PubMed]

Luz, A.

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

Lyssek-Boron, A.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

Maczynska, E.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

Malinowska, M.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

Mantry, S.

S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
[Crossref] [PubMed]

Marcos, S.

McAlinden, C.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Mehta, J. S.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Mosaddegh, P.

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

Murata, H.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Nakakura, S.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Nakao, Y.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Nowinska, A.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

O’Donnell, M.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Or, C.

A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]

Pascual, D.

Pedersen, I. B.

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

Pelivanov, I.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Pérez-Merino, P.

Peter, M.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Potsaid, B.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ramier, A.

Rimayanti, U.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Ruberti, J.

C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular Biomechanics and Biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).
[Crossref] [PubMed]

Rzeszewska-Zamiara, J.

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

Salomão, M. Q.

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

Sampson, D. D.

Scarcelli, G.

Schanzlin, D. J.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Schmetterer, L.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Schmidl, D.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schütze, J.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Sekundo, W.

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

Shah, S.

S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
[Crossref] [PubMed]

Shen, T. T.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Siedlecki, D.

Sigal, I. A.

I. A. Sigal and C. R. Ethier, “Biomechanics of the optic nerve head,” Exp. Eye Res. 88(4), 799–807 (2009).
[Crossref] [PubMed]

Singh, M.

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

Song, S.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Srivannaboon, S.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
[Crossref] [PubMed]

Stamenov, I.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, X.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowski, M.

Szlag, D.

Szulzycki, K.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

Tabuchi, H.

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Teper, S.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

Thibos, L. N.

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99(2), 99–106 (2016).
[Crossref] [PubMed]

Tremblay, E. J.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Vestergaard, A. H.

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

Wang, Q.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Wang, R. K.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Wang, S.

Wei, A.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Weinreb, R. N.

C. K.-S. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

Werkmeister, R. M.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Wilczynski, S.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

Witkin, A. J.

A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]

Wojtkowski, M.

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
[Crossref] [PubMed]

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

Wróbel, Z.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

Wu, C.

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

Wylegala, E.

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

Xu, J.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Yasin Alibhai, A.

A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]

Ye, C.

C. K.-S. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

Yoon, S. J.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

Yu, J.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Yu, X.

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

Yun, S. H.

Zawadzki, R. J.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

Zhang, J. Y.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

Zhao, Y.

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Acta Bioeng. Biomech. (1)

M. Jannesari, M. Kadkhodaei, P. Mosaddegh, H. Kasprzak, and M. J. Behrouz, “Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models,” Acta Bioeng. Biomech. 20(1), 39–48 (2018).
[PubMed]

Adv. Opt. Photonics (1)

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular Biomechanics and Biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13(1), 150 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

Clin. Exp. Optom. (1)

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99(2), 99–106 (2016).
[Crossref] [PubMed]

Comput. Biol. Med. (1)

R. Koprowski, S. Wilczyński, A. Nowinska, A. Lyssek-Boron, S. Teper, E. Wylegala, and Z. Wróbel, “Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer,” Comput. Biol. Med. 58, 91–100 (2015).
[Crossref] [PubMed]

Cont. Lens Anterior Eye (1)

S. Shah, M. Laiquzzaman, I. Cunliffe, and S. Mantry, “The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes,” Cont. Lens Anterior Eye 29(5), 257–262 (2006).
[Crossref] [PubMed]

Curr. Ophthalmol. Rep. (1)

A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]

Exp. Eye Res. (1)

I. A. Sigal and C. R. Ethier, “Biomechanics of the optic nerve head,” Exp. Eye Res. 88(4), 799–807 (2009).
[Crossref] [PubMed]

Eye Vis. (Lond.) (1)

P. Kongsap, “Comparison of a new optical biometer and a standard biometer in cataract patients,” Eye Vis. (Lond.) 3(1), 27 (2016).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

I. B. Pedersen, S. Bak-Nielsen, A. H. Vestergaard, A. Ivarsen, and J. Hjortdal, “Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry,” Graefes Arch. Clin. Exp. Ophthalmol. 252(8), 1329–1335 (2014).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

J. Hong, J. Xu, A. Wei, S. X. Deng, X. Cui, X. Yu, and X. Sun, “A New Tonometer--The Corvis ST Tonometer: Clinical Comparison with Noncontact and Goldmann Applanation Tonometers,” Invest. Ophthalmol. Vis. Sci. 54(1), 659–665 (2013).
[Crossref] [PubMed]

C. K.-S. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, “Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry,” Invest. Ophthalmol. Vis. Sci. 60(6), 1979–1986 (2019).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref] [PubMed]

J. Biophotonics (1)

E. Maczynska, K. Karnowski, K. Szulzycki, M. Malinowska, H. Dolezyczek, A. Cichanski, M. Wojtkowski, B. Kaluzny, and I. Grulkowski, “Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis,” J. Biophotonics 12(2), e201800154 (2019).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (3)

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41(10), 2224–2232 (2015).
[Crossref] [PubMed]

K. S. Kunert, M. Peter, M. Blum, W. Haigis, W. Sekundo, J. Schütze, and T. Büehren, “Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry,” J. Cataract Refract. Surg. 42(1), 76–83 (2016).
[Crossref] [PubMed]

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31(1), 156–162 (2005).
[Crossref] [PubMed]

J. Curr. Ophthalmol. (1)

A. Luz, F. Faria-Correia, M. Q. Salomão, B. T. Lopes, and R. Ambrósio, “Corneal biomechanics: Where are we?” J. Curr. Ophthalmol. 28(3), 97–98 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (2)

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

J. Huang, H. Chen, Y. Li, Z. Chen, R. Gao, J. Yu, Y. Zhao, W. Lu, C. McAlinden, and Q. Wang, “Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry,” J. Refract. Surg. 35(2), 115–120 (2019).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

S. Kling and F. Hafezi, “Corneal biomechanics - a review,” Ophthalmic Physiol. Opt. 37(3), 240–252 (2017).
[Crossref] [PubMed]

A. Boszczyk, H. Kasprzak, and A. Jóźwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthalmic Physiol. Opt. 37(3), 253–262 (2017).
[Crossref] [PubMed]

Ophthalmology (1)

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Optom. Vis. Sci. (1)

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89(5), 524–542 (2012).
[Crossref] [PubMed]

PLoS One (1)

R. Asaoka, S. Nakakura, H. Tabuchi, H. Murata, Y. Nakao, N. Ihara, U. Rimayanti, M. Aihara, and Y. Kiuchi, “The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature,” PLoS One 10(10), e0140385 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

C. Wu, S. R. Aglyamov, C. H. Liu, Z. Han, M. Singh, and K. V. Larin, “Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by Optical Coherence Elastography,” Proc. SPIE 10045, 1004503 (2017).
[Crossref]

Prog. Retin. Eye Res. (1)

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha Dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retin. Eye Res. 66, 132–156 (2018).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
[Crossref] [PubMed]

Other (5)

C. J. Roberts and J. Liu, eds., Corneal Biomechanics: From Theory to Practice (Kugler Publications, Ansterdam, 2016), pp. 300.

I. Grulkowski, “Anterior segment OCT,” in Handbook of Visual Optics, Volume Two: Instrumentation and Vision P. Artal, ed. (CRC Press - Taylor & Francis Group, 2017), pp. 61–90.

J. Birkenfeld, A. Ramier, B. Tavakol, S. Marcos, and S.-H. Yun, “Assessment of ocular mechanical resonances using phase-sensitive OCT and frequency-domain air puff stimulation,” manuscript in preparation (2019).

C. J. Roberts, A. M. Mahmoud, K. A. V. Mendoza, and R. J. Ambrósio, “Interpreting dynamic corneal response parameters of the Corvis ST,” in Corneal Biomechanics: From Theory to Practice, C. J. Roberts and J. Liu, eds. (Kugler Publications, 2016), pp. 165–182.

M. Wojtkowski, E. Mączyńska, B. Kałużny, and I. Grulkowski, “Air-puff Swept-Source Optical Coherence Tomography,” in Frontiers in Optics 2016, (Optical Society of America, 2016), FTh4H.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Prototype air-puff SS-OCT ocular biometer: (a) Schematic representation of the optical setup integrated with the air-puff system. (b) Integration of the air-puff chamber in the sample arm of the OCT system (side view).
Fig. 2
Fig. 2 Determination of the spatial characteristics of the air-puff. (a) Calibration of the customized external force sensor. Relation between weight (gravitational force) and external force sensor signal. (b) Calibration of the internal pressure sensor of the air-puff system with the force sensor. Relation between pressure sensor signal and force (force sensor signal). (c) Characterization of the air-puff shape in transverse (x-axis) and axial (z-axis) directions. The spatial filter and the external force sensor have not been shown. The maximum of the force sensor signal across the nozzle diameter for different positions behind the nozzle end.
Fig. 3
Fig. 3 Optimization of air-puff signal and optical detection of sample deformation. (a) Signal delay caused by the length L of the tube that connects the air-puff chamber and the built-in pressure sensor. Time scale is offset with respect to the selected data set. (b) Dependence of the delay between displacement and pressure temporal profiles on the length L of the tube.
Fig. 4
Fig. 4 Eye reaction to the air puff and ocular biometry. (a) SS-OCT M-scan of the response of the ocular components to the air puff measured along the visual axis. Acquired data set. Representative M-scan of the left eye of 31-yo subject representing dynamics of the ocular components during air puff and segmented analysis. Temporal evolution of the air puff is plotted with orange line. The yellow arrow indicates the air-puff action. The blue dashed line represents zero optical path delay (OPD = 0). (b) The complex conjugate resolved M-scan. (c) Binary image showing segmentation of ocular interfaces. (d) Dynamics of the eye components after correction for light refraction. Geometrical distances correspond to ocular biometry measurements that can be performed before the air puff and at the maximum displacement. CCT – central corneal thickness, ACD – anterior chamber depth, LT – lens thickness, VCD – vitreous chamber depth, AL – axial eye length. The parameters with subscript ‘puff’ indicate the parameters measured at maximum deformation.
Fig. 5
Fig. 5 Correction of measured displacement for eye retraction. (a) Schematic of the eye retraction during air-puff stimulation. The eye before the air-puff stimulation and during maximum deformation. (b) Extracted eye retraction dynamics from full-eye-length OCT data using method A and B. Displacement of the corneal apex (anterior corneal interface) of the left eye of 28-yo subject before (red) and after (blue) eye retraction correction. (c) Extracted eye retraction dynamics from full-eye-length OCT data using method A and B. Displacement of the anterior lens surface of the same subject before (red) and after (blue) eye retraction correction. (d) Corneal hysteresis before (red) and after (blue) eye retraction correction. AL – axial eye length before the air puff application, ALpuff – axial eye length during maximum deformation, CH – corneal hysteresis.
Fig. 6
Fig. 6 Analysis of the temporal profile of the deformation (deflection of the cornea) of the right eye of 22-yo subject. (a) Corneal deformation after eye retraction correction. Air-puff stimulus. (b) Corneal apex velocity. (c) Corneal apex acceleration.
Fig. 7
Fig. 7 Precision of the measurement of the reaction of ocular components to air-puff stimulation. Average retraction-corrected displacement (deflection) of the anterior surface of the cornea (a) and the crystalline lens (b) of 22-yo subject. Mean and standard deviation of temporal responses of the cornea and the crystalline lens were calculated from 8 measurements.
Fig. 8
Fig. 8 Impact of the air-puff deformation on the light propagation in the eye. Simulations of the light propagation in the eye in the pre-puff phase (a), during corneal applanation (b) and in the highest concavity phase (c).

Tables (1)

Tables Icon

Table 1 Precision and reproducibility of computed parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S D x = i=1 M j=1 N ( x ij x ¯ i ) 2 M( N1 ) ,
Δ z i tot ( t )=Δ z i ( t )+δ z retr ( t ).
Δ z i ( t )=Δ z i tot ( t )δ z retr ( t ).
δ z retr ( t )=Δ z 3 tot ( t )Δ z 3 tot ( t=0 ),
Δ z 1 ( t )=AL( t=0 )AL( t ).

Metrics