Abstract

Earlier studies have shown that the gradient index of refraction (GRIN) of the crystalline lens can be reconstructed in vitro using Optical Coherence Tomography (OCT) images. However, the methodology cannot be extended in vivo because it requires accurate measurements of the external geometry of the lens. Specifically, the posterior surface is measured by flipping the lens so that the posterior lens surface faces the OCT beam, a method that cannot be implemented in vivo. When the posterior surface is imaged through the lens in its natural position, it appears distorted by the unknown GRIN. In this study, we demonstrate a method to reconstruct both the GRIN and the posterior surface shape without the need to flip the lens by applying optimization routines using both on-axis and off-axis OCT images of cynomolgous monkey crystalline lenses, obtained by rotating the OCT delivery probe from −45 to +45 degrees in 5 degree steps. We found that the GRIN profile parameters can be reconstructed with precisions up to 0.009, 0.004, 1.7 and 1.1 (nucleus and surface refractive indices, and axial and meridional power law, respectively), the radius of curvature within 0.089 mm and the conic constant within 0.3. While the method was applied on isolated crystalline lenses, it paves the way to in vivo lens GRIN and posterior lens surface reconstruction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging

Alberto de Castro, Sergio Ortiz, Enrique Gambra, Damian Siedlecki, and Susana Marcos
Opt. Express 18(21) 21905-21917 (2010)

Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient

David Borja, Damian Siedlecki, Alberto de Castro, Stephen Uhlhorn, Sergio Ortiz, Esdras Arrieta, Jean-Marie Parel, Susana Marcos, and Fabrice Manns
Biomed. Opt. Express 1(5) 1331-1340 (2010)

Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from Ray Tracing and Optical Coherence Tomography data

Alberto de Castro, Sergio Barbero, Sergio Ortiz, and Susana Marcos
Opt. Express 19(20) 19265-19279 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  2. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
    [Crossref] [PubMed]
  3. B. K. Pierscionek, “Refractive index of the human lens surface measured with an optic fibre sensor,” Ophthalmic Res. 26(1), 32–35 (1994).
    [Crossref] [PubMed]
  4. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
    [Crossref] [PubMed]
  5. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
    [Crossref] [PubMed]
  6. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
    [Crossref] [PubMed]
  7. J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
    [Crossref] [PubMed]
  8. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
    [Crossref] [PubMed]
  9. B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
    [Crossref] [PubMed]
  10. J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
    [Crossref] [PubMed]
  11. M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
    [Crossref] [PubMed]
  12. B. K. Pierscionek, “Refractive index contours in the human lens,” Exp. Eye Res. 64(6), 887–893 (1997).
    [Crossref] [PubMed]
  13. L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
    [Crossref] [PubMed]
  14. E. Acosta, D. Vazquez, L. Garner, and G. Smith, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens,” J. Opt. Soc. Am. A 22(3), 424–433 (2005).
    [Crossref] [PubMed]
  15. D. Vazquez, E. Acosta, G. Smith, and L. Garner, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens,” J. Opt. Soc. Am. A 23(10), 2551–2565 (2006).
    [Crossref] [PubMed]
  16. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
    [Crossref]
  17. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref] [PubMed]
  18. C. Qiu, B. Maceo Heilman, J. Kaipio, P. Donaldson, and E. Vaghefi, “Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile,” Biomed. Opt. Express 8(11), 4947–4964 (2017).
    [Crossref] [PubMed]
  19. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
    [Crossref] [PubMed]
  20. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
    [Crossref] [PubMed]
  21. M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
    [Crossref] [PubMed]
  22. M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
    [Crossref] [PubMed]
  23. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
    [Crossref] [PubMed]
  24. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
    [Crossref] [PubMed]
  25. J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
    [Crossref] [PubMed]
  26. B. A. Moffat and J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20(1), 83–93 (2002).
    [Crossref] [PubMed]
  27. A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
    [Crossref] [PubMed]
  28. J. Birkenfeld, A. de Castro, and S. Marcos, “Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions,” Invest. Ophthalmol. Vis. Sci. 56(9), 5067–5073 (2015).
    [Crossref] [PubMed]
  29. M. Ruggeri, S. Williams, B. M. Heilman, Y. Yao, Y.-C. Chang, A. Mohamed, N. G. Sravani, H. Durkee, C. Rowaan, A. Gonzalez, A. Ho, J.-M. Parel, and F. Manns, “System for on- and off-axis volumetric OCT imaging and ray tracing aberrometry of the crystalline lens,” Biomed. Opt. Express 9(8), 3834–3851 (2018).
    [Crossref] [PubMed]
  30. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  31. R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
    [PubMed]
  32. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
    [Crossref] [PubMed]
  33. D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
    [Crossref] [PubMed]
  34. J. Yao, K. P. Thompson, B. Ma, M. Ponting, and J. P. Rolland, “Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system,” Opt. Express 24(17), 19388–19404 (2016).
    [Crossref] [PubMed]
  35. F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8(6), 2906–2923 (2017).
    [Crossref] [PubMed]
  36. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  37. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
    [Crossref] [PubMed]
  38. N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19(2), 175–183 (1974).
    [Crossref] [PubMed]
  39. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  40. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [Crossref] [PubMed]
  41. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [Crossref] [PubMed]
  42. C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett. 38(2), 85–87 (2013).
    [Crossref] [PubMed]
  43. R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15(9), 2522–2529 (1998).
    [Crossref] [PubMed]
  44. D. A. Atchison and D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19(11), 2180–2184 (2002).
    [Crossref] [PubMed]
  45. B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (1)

2015 (4)

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions,” Invest. Ophthalmol. Vis. Sci. 56(9), 5067–5073 (2015).
[Crossref] [PubMed]

2014 (1)

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

2013 (3)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett. 38(2), 85–87 (2013).
[Crossref] [PubMed]

2012 (1)

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

2011 (4)

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

2008 (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

2007 (2)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

2006 (3)

D. Vazquez, E. Acosta, G. Smith, and L. Garner, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens,” J. Opt. Soc. Am. A 23(10), 2551–2565 (2006).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

2005 (2)

E. Acosta, D. Vazquez, L. Garner, and G. Smith, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens,” J. Opt. Soc. Am. A 22(3), 424–433 (2005).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

2004 (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

2002 (4)

V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[Crossref] [PubMed]

D. A. Atchison and D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19(11), 2180–2184 (2002).
[Crossref] [PubMed]

B. A. Moffat and J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20(1), 83–93 (2002).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

2001 (3)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

1998 (1)

1997 (1)

B. K. Pierscionek, “Refractive index contours in the human lens,” Exp. Eye Res. 64(6), 887–893 (1997).
[Crossref] [PubMed]

1994 (1)

B. K. Pierscionek, “Refractive index of the human lens surface measured with an optic fibre sensor,” Ophthalmic Res. 26(1), 32–35 (1994).
[Crossref] [PubMed]

1984 (1)

M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
[Crossref] [PubMed]

1974 (1)

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19(2), 175–183 (1974).
[Crossref] [PubMed]

Acosta, A. C.

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

Acosta, E.

Adnan, J. M.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

Arrieta, E.

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

Arrieta-Quintera, E.

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

Artal, P.

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Atchison, D. A.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

D. A. Atchison and D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19(11), 2180–2184 (2002).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Augusteyn, R. C.

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

Bahrami, M.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

Barbero, S.

Baumann, B.

Beer, F.

Berrio, E.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Birkenfeld, J.

J. Birkenfeld, A. de Castro, and S. Marcos, “Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions,” Invest. Ophthalmol. Vis. Sci. 56(9), 5067–5073 (2015).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

Borja, D.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Brown, N.

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19(2), 175–183 (1974).
[Crossref] [PubMed]

Campbell, M. C.

M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
[Crossref] [PubMed]

Chang, Y.-C.

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

de Castro, A.

J. Birkenfeld, A. de Castro, and S. Marcos, “Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions,” Invest. Ophthalmol. Vis. Sci. 56(9), 5067–5073 (2015).
[Crossref] [PubMed]

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

de Freitas, C.

Denham, D. B.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Donaldson, P.

Dorronsoro, C.

Dubbelman, M.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Durkee, H.

M. Ruggeri, S. Williams, B. M. Heilman, Y. Yao, Y.-C. Chang, A. Mohamed, N. G. Sravani, H. Durkee, C. Rowaan, A. Gonzalez, A. Ho, J.-M. Parel, and F. Manns, “System for on- and off-axis volumetric OCT imaging and ray tracing aberrometry of the crystalline lens,” Biomed. Opt. Express 9(8), 3834–3851 (2018).
[Crossref] [PubMed]

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

Fernandez, V.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Gambra, E.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

Garner, L.

Garner, L. F.

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

Gonzalez, A.

Gröschl, M.

Grulkowski, I.

Guirao, A.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Gupta, P. K.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

Haindl, R.

Heilman, B. M.

Hitzenberger, C. K.

Ho, A.

M. Ruggeri, S. Williams, B. M. Heilman, Y. Yao, Y.-C. Chang, A. Mohamed, N. G. Sravani, H. Durkee, C. Rowaan, A. Gonzalez, A. Ho, J.-M. Parel, and F. Manns, “System for on- and off-axis volumetric OCT imaging and ray tracing aberrometry of the crystalline lens,” Biomed. Opt. Express 9(8), 3834–3851 (2018).
[Crossref] [PubMed]

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett. 38(2), 85–87 (2013).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Hoshino, M.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Izatt, J.

Jaeken, B.

Jones, C. E.

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Kaipio, J.

Kasthurirangan, S.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Lundström, L.

Ma, B.

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Maceo Heilman, B.

C. Qiu, B. Maceo Heilman, J. Kaipio, P. Donaldson, and E. Vaghefi, “Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile,” Biomed. Opt. Express 8(11), 4947–4964 (2017).
[Crossref] [PubMed]

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

Manns, F.

M. Ruggeri, S. Williams, B. M. Heilman, Y. Yao, Y.-C. Chang, A. Mohamed, N. G. Sravani, H. Durkee, C. Rowaan, A. Gonzalez, A. Ho, J.-M. Parel, and F. Manns, “System for on- and off-axis volumetric OCT imaging and ray tracing aberrometry of the crystalline lens,” Biomed. Opt. Express 9(8), 3834–3851 (2018).
[Crossref] [PubMed]

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett. 38(2), 85–87 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Marcos, S.

J. Birkenfeld, A. de Castro, and S. Marcos, “Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions,” Invest. Ophthalmol. Vis. Sci. 56(9), 5067–5073 (2015).
[Crossref] [PubMed]

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Moffat, B. A.

B. A. Moffat and J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20(1), 83–93 (2002).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Mohamed, A.

Mohri, S.

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Moreno, E.

Navarro, R.

Ortiz, S.

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

Parel, J. M.

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Parel, J.-M.

Pascual, D.

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

Patel, H. S.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

Pierscionek, B.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Pierscionek, B. K.

B. K. Pierscionek, “Refractive index contours in the human lens,” Exp. Eye Res. 64(6), 887–893 (1997).
[Crossref] [PubMed]

B. K. Pierscionek, “Refractive index of the human lens surface measured with an optic fibre sensor,” Ophthalmic Res. 26(1), 32–35 (1994).
[Crossref] [PubMed]

Pircher, M.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Ponting, M.

Pope, J. M.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

B. A. Moffat and J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20(1), 83–93 (2002).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Qiu, C.

Radhakrishnan, S.

Rao, K. D.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

Regini, J.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Remon, L.

Rolland, J. P.

Rollins, A.

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

Rosen, A. M.

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Rowaan, C.

Ruggeri, M.

Scott, D. H.

Sepehrband, F.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

Siedlecki, D.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

Smith, G.

D. Vazquez, E. Acosta, G. Smith, and L. Garner, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens,” J. Opt. Soc. Am. A 23(10), 2551–2565 (2006).
[Crossref] [PubMed]

E. Acosta, D. Vazquez, L. Garner, and G. Smith, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens,” J. Opt. Soc. Am. A 22(3), 424–433 (2005).
[Crossref] [PubMed]

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Sravani, N. G.

Suheimat, M.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

Suresh, M. K.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

Thompson, K. P.

Uesugi, K.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Uhlhorn, S.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

Vaghefi, E.

Van der Heijde, G. L.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Vazquez, D.

Verkicharla, P. K.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

Verma, Y.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

Wartak, A.

Westphal, V.

Williams, D. R.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Williams, S.

Wojtkowski, M.

Yagi, N.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Yao, J.

Yao, S.

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

Yao, Y.

Ziebarth, N. M.

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[Crossref]

Biomed. Opt. Express (4)

Exp. Eye Res. (3)

B. K. Pierscionek, “Refractive index contours in the human lens,” Exp. Eye Res. 64(6), 887–893 (1997).
[Crossref] [PubMed]

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye Res. 140, 19–27 (2015).
[Crossref] [PubMed]

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19(2), 175–183 (1974).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens Shape and Refractive Index Distribution in Type 1 Diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. M. Ziebarth, A. C. Acosta, E. Arrieta-Quintera, R. C. Augusteyn, and J. M. Parel, “Refractive power and biometric properties of the nonhuman primate isolated crystalline lens,” Invest. Ophthalmol. Vis. Sci. 51(4), 2118–2125 (2010).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions,” Invest. Ophthalmol. Vis. Sci. 56(9), 5067–5073 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

B. Maceo Heilman, F. Manns, A. de Castro, H. Durkee, E. Arrieta, S. Marcos, and J. M. Parel, “Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher,” Invest. Ophthalmol. Vis. Sci. 56(3), 1743–1750 (2015).
[Crossref] [PubMed]

J. Mod. Opt. (1)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

J. Vis. (1)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Magn. Reson. Imaging (1)

B. A. Moffat and J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20(1), 83–93 (2002).
[Crossref] [PubMed]

Mol. Vis. (1)

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Ophthalmic Res. (1)

B. K. Pierscionek, “Refractive index of the human lens surface measured with an optic fibre sensor,” Ophthalmic Res. 26(1), 32–35 (1994).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Optom. Vis. Sci. (2)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

PLoS One (1)

M. Hoshino, K. Uesugi, N. Yagi, S. Mohri, J. Regini, and B. Pierscionek, “Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes,” PLoS One 6(9), e25140 (2011).
[Crossref] [PubMed]

Vision Res. (7)

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Other (1)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Picture of the OCT probe mounted in a rotation stage (A) and (B), schema of the experimental setup (C) and (D), and OCT images for one of the lenses (E) and (F) on axis and with a rotation of 45 degrees, respectively.
Fig. 2
Fig. 2 (A) Schematic of the OCT rays refracted at the air-DMEM interface. The rays impact the lens with an angle different than that of the OCT probe, in the example of the figure, α' = 21.82°. (B) OCT image of the lens with the probe tilted by 30 degrees. (C) Processing steps to calculate the anterior surface apex, which was assumed to be the lens axis. The detected anterior surface was corrected for DMEM distortion, rotated by an angle, α', and fitted to a conic to detect the apex of the anterior surface (shown in blue). (D) OCT image of the lens with the detected anterior surface apex superimposed.
Fig. 3
Fig. 3 Results of the reconstruction error from computer simulations (assuming 10 µm Gaussian noise added to the measured optical path). (A) Reconstruction error for the 4-variable problem: 4 GRIN parameters, using anterior and posterior-up images; (B), (D) Reconstruction error for the 5-variable problem: four GRIN parameters (B), and one posterior surface parameter (lens radius of curvature) (D), using only information from anterior-up images; (C), (E) Reconstruction error for the 6-variable problem: four GRIN parameters (C), and two surface parameters (lens radius of curvature and conic) (E), using only anterior-up images. Error bars represent the standard deviation of 50 repetitions of the reconstruction algorithm with different errors. As the number of orientations used for the reconstruction increased, the accuracy of the reconstruction increased for both the GRIN parameters and the posterior surface shape.
Fig. 4
Fig. 4 Parameters of the reconstructed GRIN for all 9 crystalline lenses: (A) surface refractive index, (B) nucleus refractive index, (C) axial exponent and (D) meridional exponent. Black bars stand for the 4-variable problem (GRIN variables were optimized), gray bars for the 5-variable problem (GRIN and the posterior surface radius were optimized) and white bars for the 6-variable problem (GRIN and two parameters of the posterior surface were optimized).
Fig. 5
Fig. 5 Lens GRIN map reconstructions for the 9 crystalline lenses. Upper row: 4-variable problem (GRIN reconstruction); Middle row: 5-variable problem (GRIN and posterior surface radius of curvature reconstruction); Lower row: 6-variable problem (GRIN and posterior surface radius of curvature and conic constant reconstruction). Differences in the posterior surface shape between the three reconstruction problems are not noticeable. Scale bar represents 1 mm.
Fig. 6
Fig. 6 Reconstructed posterior lens surface shape in the 5-variable problem. (A) Reconstructed radius of curvature compared with the radius of curvature measured experimentally. (B) Bland-Altman plot.
Fig. 7
Fig. 7 Reconstructed posterior lens surface shape (radius of curvature and conic constant) in the 6-variable problem. Comparison between the measured and the reconstructed posterior surface radius of curvature (A) and corresponding Bland-Altman plot (B). Comparison between the measured and reconstructed conic constant (C) and corresponding Bland-Altman plot (D).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n( ρ,θ ) =n N Δn ( ρ ρ S ( θ ) ) p(θ) ,
z = z 0 + (x x 0 ) 2 r+ r 2 k (x x 0 ) 2 ,

Metrics