Abstract

We developed a compact, hand-held hyperspectral imaging system for 2D neural network-based visualization of skin chromophores and blood oxygenation. State-of-the-art micro-optic multichannel matrix sensor combined with the tunable Fabry-Perot micro interferometer enables a portable diagnostic device sensitive to the changes of the oxygen saturation as well as the variations of blood volume fraction of human skin. Generalized object-oriented Monte Carlo model is used extensively for the training of an artificial neural network utilized for the hyperspectral image processing. In addition, the results are verified and validated via actual experiments with tissue phantoms and human skin in vivo. The proposed approach enables a tool combining both the speed of an artificial neural network processing and the accuracy and flexibility of advanced Monte Carlo modeling. Finally, the results of the feasibility studies and the experimental tests on biotissue phantoms and healthy volunteers are presented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modelling spatially-resolved diffuse reflectance spectra of a multi-layered skin model by artificial neural networks trained with Monte Carlo simulations

Sheng-Yang Tsui, Chiao-Yi Wang, Tsan-Hsueh Huang, and Kung-Bin Sung
Biomed. Opt. Express 9(4) 1531-1544 (2018)

Quantitative principal component model for skin chromophore mapping using multi-spectral images and spatial priors

Jana M. Kainerstorfer, Jason D. Riley, Martin Ehler, Laleh Najafizadeh, Franck Amyot, Moinuddin Hassan, Randall Pursley, Stavros G. Demos, Victor Chernomordik, Michael Pircher, Paul D. Smith, Christoph K. Hitzenberger, and Amir H. Gandjbakhche
Biomed. Opt. Express 2(5) 1040-1058 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref]
  2. D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
    [Crossref]
  3. V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
    [Crossref]
  4. M. Milanic, L. Paluchowski, and L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
    [Crossref]
  5. E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
    [Crossref]
  6. M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
    [Crossref]
  7. T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
    [Crossref]
  8. A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
    [Crossref]
  9. A. Pardo, J. Gutierrez-Gutierrez, I. Lihacova, J. Lopez-Higuera, and O. Conde, “On the spectral signature of melanoma: a non-parametric classification framework for cancer detection in hyperspectral imaging of melanocytic lesions,” Biomed. Opt. Express 9(12), 6283–6301 (2018).
    [Crossref]
  10. H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
    [Crossref]
  11. P. Valdes, V. Jacobs, B. Wilson, F. Leblond, D. Roberts, and K. Paulsen, “System and methods for wide-field quantitative fluorescence imaging during neurosurgery,” Opt. Lett. 38(15), 2786–2788 (2013).
    [Crossref]
  12. E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
    [Crossref]
  13. F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
    [Crossref]
  14. S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. Farkas, and J. Y. Hwang, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
    [Crossref]
  15. J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
    [Crossref]
  16. T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
    [Crossref]
  17. D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
    [Crossref]
  18. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Digital Library (SPIE, 2015).
  19. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
    [Crossref]
  20. J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
    [Crossref]
  21. D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
    [Crossref]
  22. A. Kienle, M. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37(4), 779–791 (1998).
    [Crossref]
  23. A. Liemert and A. Kienle, “Light diffusion in n-layered turbid media: steady-state domain,” J. Biomed. Opt. 15(2), 025003 (2010).
    [Crossref]
  24. A. Bjorgan, M. Milanic, and L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J. Biomed. Opt. 19(6), 066003 (2014).
    [Crossref]
  25. V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58(2), 2395–2407 (1998).
    [Crossref]
  26. A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).
    [Crossref]
  27. A. Doronin and I. Meglinski, “Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,” J. Biomed. Opt. 17(9), 0905041 (2012).
    [Crossref]
  28. “Cloud based Monte Carlo tool for photon transport,” www.lighttransport.net . Accessed: 2019-03-04.
  29. A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
    [Crossref]
  30. M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
    [Crossref]
  31. M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
    [Crossref]
  32. T. Moffitt, Y.-C. Chen, and S. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
    [Crossref]
  33. E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref]
  34. X. Ma, J. Q. Lu, H. Ding, and X.-H. Hu, “Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm,” Opt. Lett. 30(4), 412–414 (2005).
    [Crossref]
  35. S. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  36. N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref]
  37. A. Moco, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
    [Crossref]
  38. G. Petrov, A. Doronin, H. Whelan, I. Meglinski, and V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
    [Crossref]
  39. I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.
  40. D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
    [Crossref]
  41. A. Popov, A. Bykov, and I. Meglinski, “Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo,” J. Biomed. Opt. 22(11), 110504 (2017).
    [Crossref]
  42. K. Akons, E. Dann, and D. Yelin, “Measuring blood oxygen saturation along a capillary vessel in human,” Biomed. Opt. Express 8(11), 5342–5348 (2017).
    [Crossref]
  43. D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref]
  44. R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
    [Crossref]

2019 (1)

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

2018 (5)

A. Pardo, J. Gutierrez-Gutierrez, I. Lihacova, J. Lopez-Higuera, and O. Conde, “On the spectral signature of melanoma: a non-parametric classification framework for cancer detection in hyperspectral imaging of melanocytic lesions,” Biomed. Opt. Express 9(12), 6283–6301 (2018).
[Crossref]

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

A. Moco, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref]

2017 (8)

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
[Crossref]

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
[Crossref]

A. Popov, A. Bykov, and I. Meglinski, “Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo,” J. Biomed. Opt. 22(11), 110504 (2017).
[Crossref]

K. Akons, E. Dann, and D. Yelin, “Measuring blood oxygen saturation along a capillary vessel in human,” Biomed. Opt. Express 8(11), 5342–5348 (2017).
[Crossref]

2016 (1)

2015 (4)

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

M. Milanic, L. Paluchowski, and L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

2014 (3)

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

A. Bjorgan, M. Milanic, and L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J. Biomed. Opt. 19(6), 066003 (2014).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

2013 (3)

2012 (2)

G. Petrov, A. Doronin, H. Whelan, I. Meglinski, and V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
[Crossref]

A. Doronin and I. Meglinski, “Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,” J. Biomed. Opt. 17(9), 0905041 (2012).
[Crossref]

2011 (6)

A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
[Crossref]

A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).
[Crossref]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref]

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
[Crossref]

2010 (1)

A. Liemert and A. Kienle, “Light diffusion in n-layered turbid media: steady-state domain,” J. Biomed. Opt. 15(2), 025003 (2010).
[Crossref]

2009 (2)

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref]

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

2006 (2)

T. Moffitt, Y.-C. Chen, and S. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]

E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

2005 (1)

1998 (2)

A. Kienle, M. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37(4), 779–791 (1998).
[Crossref]

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58(2), 2395–2407 (1998).
[Crossref]

Aalders, M.

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Aizu, Y.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Akbari, H.

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

Akons, K.

Alfieri, D.

Arens, P.

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

Ayers, F.

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

Bar-Am, K.

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

Bashkatov, A.

I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.

Bays, R.

Becker, M.

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Bernat, A.

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

Berzina, A.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Besser, M.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Bevilacqua, F.

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

Bjorgan, A.

A. Bjorgan, M. Milanic, and L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J. Biomed. Opt. 19(6), 066003 (2014).
[Crossref]

Bolton, F.

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

Bosschaart, N.

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Browning, J.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Bruscino, N.

Bydlon, T.

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

Bykov, A.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

A. Popov, A. Bykov, and I. Meglinski, “Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo,” J. Biomed. Opt. 22(11), 110504 (2017).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
[Crossref]

Cannarozzo, G.

Chang, D.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Chen, Y.-C.

T. Moffitt, Y.-C. Chen, and S. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]

Cho, D.

Cicchi, R.

Coakley, B.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Conde, O.

Cuccia, D.

R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
[Crossref]

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

Daeschlein, G.

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Dann, E.

de Giorgi, V.

de Haan, G.

A. Moco, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref]

Ding, H.

Dognitz, N.

Dommerich, S.

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

Doronin, A.

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

A. Doronin and I. Meglinski, “Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,” J. Biomed. Opt. 17(9), 0905041 (2012).
[Crossref]

G. Petrov, A. Doronin, H. Whelan, I. Meglinski, and V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
[Crossref]

A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).
[Crossref]

I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.

Dremin, V.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Dunaev, A.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

Durkin, A.

R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
[Crossref]

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

Edelman, G.

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Eisert, P.

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

Faber, D.

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Farkas, D.

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

Fiks, I.

D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
[Crossref]

Gareau, D.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Genina, E.

I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.

Gutierrez-Gutierrez, J.

Hendriks, B.

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

Hilsmann, A.

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

Hosking, A.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Hu, X.-H.

Hwang, J. Y.

Jacobs, V.

Jacques, S.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

S. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Jang, J. E.

Je, M.

Jedrzejewska-Szczerska, M.

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Kapsokalyvas, D.

Kawase, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Kelly, K.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Kersting, K.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Khosravani, M.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Kienle, A.

Kim, J.

Kim, M.

Kim, S.

Kinnunen, M.

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

Kirillin, M.

D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
[Crossref]

Kojima, K.

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

Kosugi, Y.

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

Krueger, J.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Krupatkin, A.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Kuska, M.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Leblond, F.

Lee, B.

Lee, D. H.

Lee, S. W.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Levitz, D.

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

Liemert, A.

A. Liemert and A. Kienle, “Light diffusion in n-layered turbid media: steady-state domain,” J. Biomed. Opt. 15(2), 025003 (2010).
[Crossref]

Lihacova, I.

Linden, K.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Lish, S.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Litvinova, K.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Loginova, D.

D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
[Crossref]

Lopez-Higuera, J.

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

Lu, J. Q.

Ma, X.

Maeda, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Mahlein, A.-K.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Makovik, I.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Massi, D.

Meglinski, I.

A. Popov, A. Bykov, and I. Meglinski, “Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo,” J. Biomed. Opt. 22(11), 110504 (2017).
[Crossref]

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

A. Doronin and I. Meglinski, “Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,” J. Biomed. Opt. 17(9), 0905041 (2012).
[Crossref]

G. Petrov, A. Doronin, H. Whelan, I. Meglinski, and V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
[Crossref]

A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).
[Crossref]

I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.

Milanic, M.

M. Milanic, L. Paluchowski, and L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

A. Bjorgan, M. Milanic, and L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J. Biomed. Opt. 19(6), 066003 (2014).
[Crossref]

Moco, A.

A. Moco, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref]

Moffitt, T.

T. Moffitt, Y.-C. Chen, and S. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]

Moore, I.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Myllyla, R.

A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
[Crossref]

Nachabe, R.

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

Niizeki, K.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Nishidate, I.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Nouvong, A.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Oshina, I.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Paluchowski, L.

M. Milanic, L. Paluchowski, and L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

Pardo, A.

Patterson, M.

Paulsen, K.

Pavone, F. S.

Petrov, G.

Pilon, L.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref]

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref]

Pimpinelli, N.

Podmasteryev, K.

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

Popov, A.

A. Popov, A. Bykov, and I. Meglinski, “Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo,” J. Biomed. Opt. 22(11), 110504 (2017).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
[Crossref]

Potapova, E.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Prahl, S.

T. Moffitt, Y.-C. Chen, and S. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]

Priezzhev, A.

A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
[Crossref]

Rafailov, E.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Rafailov, I.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Ramanujam, N.

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

Randeberg, L.

M. Milanic, L. Paluchowski, and L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

A. Bjorgan, M. Milanic, and L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J. Biomed. Opt. 19(6), 066003 (2014).
[Crossref]

Roberts, D.

Saager, R.

R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
[Crossref]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Schomacker, K.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref]

Schuhschenk, N.

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Sergeeva, E.

D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
[Crossref]

Sidorov, V.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Siemers, F.

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Sokolovski, S.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Spigulis, J.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
[Crossref]

Sterenborg, H.

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

Stuijk, S.

A. Moco, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref]

Sturmer, E.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Talebi-Liasi, F.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Tanaka, N.

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Tromberg, B.

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

Tromberg, B. J.

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58(2), 2395–2407 (1998).
[Crossref]

Truong, A.

R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
[Crossref]

Tuchin, V.

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Digital Library (SPIE, 2015).

Uecker, F.

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

Uto, K.

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

Valdes, P.

van den Bergh, H.

van Leeuwen, T.

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Venugopalan, V.

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58(2), 2395–2407 (1998).
[Crossref]

Wagnieres, G.

Wahabzada, M.

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Whelan, H.

Wild, T.

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Wilson, B.

Winter, J.

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Wisotzky, E.

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

Wrobel, M.

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

Yakovlev, V.

Yaroslavsky, A.

E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Yelin, D.

You, J. S.

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58(2), 2395–2407 (1998).
[Crossref]

Youn, S.

Yuasa, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Yudovsky, D.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref]

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref]

Zharkikh, E.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Zherebtsov, E.

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

Zherebtsova, A.

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

Zong, A.

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (5)

Cancer Sci. (1)

H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102(4), 852–857 (2011).
[Crossref]

J. Biomed. Opt. (17)

E. Wisotzky, F. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

F. Bolton, A. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, “Portable, low-cost multispectral imaging system: design, development, validation, and utilization,” J. Biomed. Opt. 23(12), 121612 (2018).
[Crossref]

V. Dremin, E. Zherebtsov, V. Sidorov, A. Krupatkin, I. Makovik, A. Zherebtsova, E. Zharkikh, E. Potapova, A. Dunaev, A. Doronin, A. Bykov, I. Rafailov, K. Litvinova, S. Sokolovski, and E. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
[Crossref]

M. Milanic, L. Paluchowski, and L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

E. Zherebtsov, A. Zherebtsova, A. Doronin, A. Dunaev, K. Podmasteryev, A. Bykov, and I. Meglinski, “Combined use of laser doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels,” J. Biomed. Opt. 22(4), 040502 (2017).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

A. Doronin and I. Meglinski, “Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,” J. Biomed. Opt. 17(9), 0905041 (2012).
[Crossref]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

A. Liemert and A. Kienle, “Light diffusion in n-layered turbid media: steady-state domain,” J. Biomed. Opt. 15(2), 025003 (2010).
[Crossref]

A. Bjorgan, M. Milanic, and L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J. Biomed. Opt. 19(6), 066003 (2014).
[Crossref]

T. Moffitt, Y.-C. Chen, and S. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]

E. Salomatina, B. Jiang, J. Novak, and A. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Measurements of fundamental properties of homogeneous tissue phantoms,” J. Biomed. Opt. 20(4), 045004 (2015).
[Crossref]

D. Cuccia, F. Bevilacqua, A. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

R. Saager, A. Truong, D. Cuccia, and A. Durkin, “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 16(7), 077002 (2011).
[Crossref]

A. Popov, A. Bykov, and I. Meglinski, “Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo,” J. Biomed. Opt. 22(11), 110504 (2017).
[Crossref]

J. Biomed. Photonics Eng. (1)

D. Loginova, E. Sergeeva, I. Fiks, and M. Kirillin, “Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study,” J. Biomed. Photonics Eng. 3(1), 010303 (2017).
[Crossref]

J. Biophotonics (2)

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref]

T. Bydlon, R. Nachabe, N. Ramanujam, H. Sterenborg, and B. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref]

J. Innovative Opt. Health Sci. (1)

M. Wrobel, A. Popov, A. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, and V. Tuchin, “Multi-layered tissue head phantoms for noninvasive optical diagnostics,” J. Innovative Opt. Health Sci. 08(03), 1541005 (2015).
[Crossref]

J. Wound Care (1)

T. Wild, M. Becker, J. Winter, N. Schuhschenk, G. Daeschlein, and F. Siemers, “Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing,” J. Wound Care 27(1), 38–51 (2018).
[Crossref]

Lasers Med. Sci. (1)

N. Bosschaart, G. Edelman, M. Aalders, T. van Leeuwen, and D. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Lasers Surg. Med. (1)

A. Hosking, B. Coakley, D. Chang, F. Talebi-Liasi, S. Lish, S. W. Lee, A. Zong, I. Moore, J. Browning, S. Jacques, J. Krueger, K. Kelly, K. Linden, and D. Gareau, “Hyperspectral imaging in automated digital dermoscopy screening for melanoma,” Lasers Surg. Med. 51(3), 214–222 (2019).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Phys. Rev. E (1)

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58(2), 2395–2407 (1998).
[Crossref]

PLoS One (1)

M. Wahabzada, M. Besser, M. Khosravani, M. Kuska, K. Kersting, A.-K. Mahlein, and E. Sturmer, “Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering,” PLoS One 12(12), e0186425 (2017).
[Crossref]

Proc. SPIE (1)

A. Bykov, A. Popov, A. Priezzhev, and R. Myllyla, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE 8091, 80911R (2011).
[Crossref]

Sci. Rep. (1)

A. Moco, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref]

Sensors (1)

J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
[Crossref]

Other (3)

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Digital Library (SPIE, 2015).

“Cloud based Monte Carlo tool for photon transport,” www.lighttransport.net . Accessed: 2019-03-04.

I. Meglinski, A. Doronin, A. Bashkatov, E. Genina, and V. Tuchin, “Dermal component-based optical modeling of skin translucency: Impact on skin color,” in Computational Biophysics of the Skin, (Pan Stanford Publishing Ltd., 2014), pp. 25–62.

Supplementary Material (1)

NameDescription
» Visualization 1       Hyperspectral images and the averaged diffuse reflectance of the dorsal and palmar side of a human hand. The color of the image in the visible spectral range corresponds to the probing wavelength. The dark red color is used for the wavelengths higher

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic design of the developed prototype of hyperspectral imaging system: 1 – lens hood (spacer), 2 – fiber ring illuminator delivering the broadband radiation from 50W halogen lamp, 3 – ring-shaped polarizer of illumination unit, 4 – camera polarizer; 5 – built-in diffuse reflectance standard (grey Spectralon – 50% reflection).
Fig. 2.
Fig. 2. 3D schematics of the biotissue phantom with the embedded blood vessels (a); photograph (top view) of the manufactured phantom with the channels filled with fully oxygenated blood (b); three-layer tissue phantom model used for calculations of diffuse reflectance spectra (c); measured optical properties of the biotissue phantom (d,e).
Fig. 3.
Fig. 3. Skin tissue layers taken into account in the used seven-layer model
Fig. 4.
Fig. 4. Flowchart of hyperspectral data processing. Steps 1–3 are performed prior to the measurements. Steps 4 and 5 – in line with the data acquisition. Note: step 4 could be omitted for repeated measurements of the same area of interest.
Fig. 5.
Fig. 5. Simulated spectra of diffuse reflectance from biotissue phantom (a, b) at different embedding depths $d$ of blood layer and oxygen saturation $S$. Simulated reflectance spectra for human skin at different values of blood volume coefficient $K_b$ – (c), blood oxygen saturation $S$ – (d), melanin concentration $K_{mel}$ – (e) and epidermis thickness coefficient $K_{epi}$ – (f).
Fig. 6.
Fig. 6. Spectral dependence of the diffuse reflectance measured along the deepening superficial channel (a); measured reflectance versus best fit selected by the trained ANN (b); 2D map of blood oxygen saturation in the biotissue phantom (c); recovered values of blood oxygen saturation in the deepening superficial and deep channels of the biotissue phantom (d).
Fig. 7.
Fig. 7. Photographs of the Caucasian (a) and Indian (b) skin in vivo used for the measurements. Measured skin diffuse reflectance versus best fit selected by the trained ANN for Caucasian skin at different values of blood volume fraction and oxygenation before (c) and during (d) the occlusion. The measurements were performed at a distal phalanx of a ring finger. Red and green colors indicate the parts of the spectrum used for estimation of skin blood volume fraction and oxygenation, correspondingly.
Fig. 8.
Fig. 8. Reconstructed values of the epidermal thickness (a, i) and melanin content (b, j) for the Caucasian and Indian skin, correspondingly. Retrieved maps of blood volume fraction before (c, k), during (d,l) and 1 min after (e,m) the ring/middle finger occlusion for the considered skin types. Corresponding maps of skin blood oxygenation before (f,n), during (g,o) and 1 min after (h, p) the occlusion.

Tables (1)

Tables Icon

Table 1. Parameters used for assessment of the absorption coefficients of the skin layers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ a s t r a t . c o r n e u m ( λ ) = ( 1 C H 2 O ) μ a b a s e l i n e ( λ ) + C H 2 O μ a w a t e r ( λ ) ,
μ a e p i d e r m i s ( λ ) = ( 1 C H 2 O ) ( C m e l μ a m e l ( λ ) + ( 1 C m e l ) μ a b a s e l i n e ( λ ) ) + C H 2 O μ a w a t e r ( λ ) ,
μ a l a y e r ( λ ) = ( 1 C H 2 O ) ( C b l o o d ( S μ a o x y ( λ ) + ( 1 S ) μ a d e o x y ( λ ) ) + + ( 1 C b l o o d ) μ a b a s e l i n e ( λ ) ) + C H 2 O μ a w a t e r ( λ ) .
μ s   e p i d e r m i s ( λ ) = 1.08 10 7 λ 2.364 + 13.571 λ 0.267 ,
μ s   d e r m i s ( λ ) = 1.19 10 7 λ 2.427 + 7.15 λ 0.258 .

Metrics