Abstract

The effective and non-invasive diagnosis of skin cancer is a hot topic, since biopsy is a costly and time-consuming surgical procedure. As skin relief is an important biophysical feature that can be difficult to perceive with the naked eye and by touch, we developed a novel 3D imaging scanner based on fringe projection to obtain morphological parameters of skin lesions related to perimeter, area and volume with micrometric precision. We measured 608 samples and significant morphological differences were found between melanomas and nevi (p<0.001). The capacity of the 3D scanner to distinguish these lesions was supported by a supervised machine learning algorithm resulting in 80.0% sensitivity and 76.7% specificity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On the spectral signature of melanoma: a non-parametric classification framework for cancer detection in hyperspectral imaging of melanocytic lesions

Arturo Pardo, José A. Gutiérrez-Gutiérrez, I. Lihacova, José M. López-Higuera, and Olga M. Conde
Biomed. Opt. Express 9(12) 6283-6301 (2018)

Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging

Alexey Lihachev, Ilze Lihacova, Emilija V. Plorina, Marta Lange, Alexander Derjabo, and Janis Spigulis
Biomed. Opt. Express 9(4) 1852-1858 (2018)

Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

References

  • View by:
  • |
  • |
  • |

  1. World Health Organization, “Health effects of UV radiation,” https://www.who.int/uv/health/uv_health2/en/index1.html . Accessed 15 May 2019.
  2. A. G. Goodson and D. Grossman, “Strategies for early melanoma detection: Approaches to the patient with nevi,” J. Am. Acad. Dermatol. 60(5), 719–735 (2009).
    [Crossref] [PubMed]
  3. G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
    [Crossref] [PubMed]
  4. S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
    [Crossref] [PubMed]
  5. M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
    [Crossref] [PubMed]
  6. X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
    [Crossref] [PubMed]
  7. L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
    [Crossref] [PubMed]
  8. M. F. Costa, “Optical Triangulation-Based Microtopographic Inspection of Surfaces,” Sensors (Basel) 12(4), 4399–4420 (2012).
    [Crossref] [PubMed]
  9. International Organization for Standardization, “ISO 25178 Geometric Product Specifications (GPS) – Surface texture: areal”, (2012).
  10. C. Hof and H. Hopermann, “Comparison of replica- and in vivo-measurement of the microtopography of human skin,” SOFW J. 126, 40–46 (2000).
  11. D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
    [Crossref]
  12. C. J. Moore, D. Burton, O. Skydan, P. Sharrock, and M. Lalor, “3D Body Surface Measurement and Display in Radiotherapy Part I: Technology of Structured Light Surface Sensing,” in Proceedings of IEEE International Conference on Medical Information Visualisation - BioMedical Visualisation (IEEE, 2006), pp. 97–102.
    [Crossref]
  13. M. Ares, S. Royo, M. Vilaseca, J. A. Herrera-Ramírez, X. Delpueyo, and F. Sanàbria, “Handheld 3D scanning system for in-vivo imaging of skin cancer,” in Proceedings of the 5th International Conference on 3D Body Scanning Technologies, N. D’Apuzzo, ed. (Hometrica Consulting, 2014), pp. 231–236.
    [Crossref]
  14. D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (John Wiley & Sons Inc., 1998).
  15. R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Trans. Robot. Autom. 3(4), 323–344 (1987).
    [Crossref]
  16. S. Y. Kung, Kernel Methods and Machine Learning (Cambridge University Press, 2014), App. A.

2018 (1)

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

2017 (1)

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

2012 (2)

M. F. Costa, “Optical Triangulation-Based Microtopographic Inspection of Surfaces,” Sensors (Basel) 12(4), 4399–4420 (2012).
[Crossref] [PubMed]

G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
[Crossref] [PubMed]

2009 (2)

A. G. Goodson and D. Grossman, “Strategies for early melanoma detection: Approaches to the patient with nevi,” J. Am. Acad. Dermatol. 60(5), 719–735 (2009).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

2006 (1)

D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
[Crossref]

2004 (1)

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

2000 (1)

C. Hof and H. Hopermann, “Comparison of replica- and in vivo-measurement of the microtopography of human skin,” SOFW J. 126, 40–46 (2000).

1987 (1)

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Trans. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

Alexandratou, E.

D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
[Crossref]

Andersen, P. E.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

Ares, M.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Bosch, T.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Burgos-Fernández, F. J.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

Costa, M. F.

M. F. Costa, “Optical Triangulation-Based Microtopographic Inspection of Surfaces,” Sensors (Basel) 12(4), 4399–4420 (2012).
[Crossref] [PubMed]

Cuevas, J.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

Delpueyo, X.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Ekwueme, D. U.

G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
[Crossref] [PubMed]

Goldgeier, M.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

González, S.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

Goodson, A. G.

A. G. Goodson and D. Grossman, “Strategies for early melanoma detection: Approaches to the patient with nevi,” J. Am. Acad. Dermatol. 60(5), 719–735 (2009).
[Crossref] [PubMed]

Gorpas, D. S.

D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
[Crossref]

Grossman, D.

A. G. Goodson and D. Grossman, “Strategies for early melanoma detection: Approaches to the patient with nevi,” J. Am. Acad. Dermatol. 60(5), 719–735 (2009).
[Crossref] [PubMed]

Guy, G. P.

G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
[Crossref] [PubMed]

Hof, C.

C. Hof and H. Hopermann, “Comparison of replica- and in vivo-measurement of the microtopography of human skin,” SOFW J. 126, 40–46 (2000).

Hopermann, H.

C. Hof and H. Hopermann, “Comparison of replica- and in vivo-measurement of the microtopography of human skin,” SOFW J. 126, 40–46 (2000).

Jaen, P.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

Jemec, G. B.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

Joergensen, T. M.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

Malvehy, J.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

Mogensen, M.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

Noguero, F.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Nori, S.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

Pellacani, G.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Politopoulos, K.

D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
[Crossref]

Puig, S.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Rey-Barroso, L.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Richardson, L. C.

G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
[Crossref] [PubMed]

Rius-Díaz, F.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

Royo, S.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Sanabria, F.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Solomita, G.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Tangka, F. K.

G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
[Crossref] [PubMed]

Thrane, L.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

Torres, A.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

Tsai, R.

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Trans. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

Vilaseca, M.

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Yova, D.

D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
[Crossref]

Am. J. Prev. Med. (1)

G. P. Guy, D. U. Ekwueme, F. K. Tangka, and L. C. Richardson, “Melanoma Treatment Costs: A Systematic Review of the Literature, 1990-2011,” Am. J. Prev. Med. 43(5), 537–545 (2012).
[Crossref] [PubMed]

IEEE Trans. Robot. Autom. (1)

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Trans. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

J. Am. Acad. Dermatol. (2)

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[Crossref] [PubMed]

A. G. Goodson and D. Grossman, “Strategies for early melanoma detection: Approaches to the patient with nevi,” J. Am. Acad. Dermatol. 60(5), 719–735 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, G. Pellacani, F. Noguero, G. Solomita, T. Bosch, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref] [PubMed]

Proc. SPIE (1)

D. S. Gorpas, K. Politopoulos, E. Alexandratou, and D. Yova, “A binocular machine vision system for non-melanoma skin cancer 3D reconstruction,” Proc. SPIE 6081, 60810D (2006).
[Crossref]

Semin. Cutan. Med. Surg. (1)

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. Jemec, “Optical Coherence Tomography for Imaging of Skin and Skin Diseases,” Semin. Cutan. Med. Surg. 28(3), 196–202 (2009).
[Crossref] [PubMed]

Sensors (Basel) (2)

L. Rey-Barroso, F. J. Burgos-Fernández, X. Delpueyo, M. Ares, S. Royo, J. Malvehy, S. Puig, and M. Vilaseca, “Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis,” Sensors (Basel) 18(5), 1441 (2018).
[Crossref] [PubMed]

M. F. Costa, “Optical Triangulation-Based Microtopographic Inspection of Surfaces,” Sensors (Basel) 12(4), 4399–4420 (2012).
[Crossref] [PubMed]

SOFW J. (1)

C. Hof and H. Hopermann, “Comparison of replica- and in vivo-measurement of the microtopography of human skin,” SOFW J. 126, 40–46 (2000).

Other (6)

S. Y. Kung, Kernel Methods and Machine Learning (Cambridge University Press, 2014), App. A.

C. J. Moore, D. Burton, O. Skydan, P. Sharrock, and M. Lalor, “3D Body Surface Measurement and Display in Radiotherapy Part I: Technology of Structured Light Surface Sensing,” in Proceedings of IEEE International Conference on Medical Information Visualisation - BioMedical Visualisation (IEEE, 2006), pp. 97–102.
[Crossref]

M. Ares, S. Royo, M. Vilaseca, J. A. Herrera-Ramírez, X. Delpueyo, and F. Sanàbria, “Handheld 3D scanning system for in-vivo imaging of skin cancer,” in Proceedings of the 5th International Conference on 3D Body Scanning Technologies, N. D’Apuzzo, ed. (Hometrica Consulting, 2014), pp. 231–236.
[Crossref]

D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (John Wiley & Sons Inc., 1998).

International Organization for Standardization, “ISO 25178 Geometric Product Specifications (GPS) – Surface texture: areal”, (2012).

World Health Organization, “Health effects of UV radiation,” https://www.who.int/uv/health/uv_health2/en/index1.html . Accessed 15 May 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) Skin lesion and 3D prototype, which is acquiring fringe images of a lesion. (b) Fringe images, reconstructed and unwrapped phase maps and 3D images with the superimposed color texture. (c) Height map of the lesion.
Fig. 2
Fig. 2 3D data of (a) a nevus and (b) a melanoma. Top, from left to right: height maps and 3D views of the surface after image processing (leveling, zooming, filling-in non-measured points and FFT filtering). The mean profile of each lesion is shown at the bottom.

Tables (3)

Tables Icon

Table 1 3D Morphological Parameters with Statistically Significant Differences among Groups (p < 0.001, KW Test): area (A, mm2), volume (V, mm3), perimeter (P, mm), Ap (mm) and Vp (mm2).

Tables Icon

Table 2 p-values between Groups of Lesions (MWU Test)

Tables Icon

Table 3 Sensitivity (SN), Specificity (SP) and Error Rate (ER) Values for the ‘Cross’ and ‘Holdout Validation’ Approaches.

Metrics