Abstract

Here, we present a new class of third harmonic generation (THG) imaging probes that can be activated with precise spatiotemporal control using non-linear excitation. These probes consist of lipid-coated perfluorocarbon nanodroplets with embedded visible chromophores. The droplets undergo phase transition from liquid to gas upon heating mediated by two-photon absorption of NIR light by the embedded dyes. Resulting microbubbles provide a sharp, local refractive index mismatch, which makes an excellent source of THG signal. Potential applications of these probes include activatable THG agents for biological imaging and “on-demand” delivery of various compounds under THG monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening

Kristina A. Hallam, Eleanor M. Donnelly, Andrei B. Karpiouk, Robin K. Hartman, and Stanislav Y. Emelianov
Biomed. Opt. Express 9(9) 4527-4538 (2018)

Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy

Chieh-Feng Chang, Chao-Yu Chen, Fu-Hsiung Chang, Shih-Peng Tai, Cheng-Ying Chen, Che-Hang Yu, Yi-Bing Tseng, Tsung-Han Tsai, I-Shuo Liu, Wei-Fang Su , and Chi-Kuang Sun
Opt. Express 16(13) 9534-9548 (2008)

Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy

Kaitlin Harpel, Robert Dawson Baker, Babak Amirsolaimani, Soroush Mehravar, Josef Vagner, Terry O. Matsunaga, Bhaskar Banerjee, and Khanh Kieu
Biomed. Opt. Express 7(7) 2849-2860 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. N. Germain, E. A. Robey, and M. D. Cahalan, “A decade of imaging cellular motility and interaction dynamics in the immune system,” Science 336(6089), 1676–1681 (2012).
    [Crossref] [PubMed]
  2. K. Wolf and P. Friedl, “Functional imaging of pericellular proteolysis in cancer cell invasion,” Biochimie 87(3-4), 315–320 (2005).
    [Crossref] [PubMed]
  3. J. A. Thomas, “Optical imaging probes for biomolecules: an introductory perspective,” Chem. Soc. Rev. 44(14), 4494–4500 (2015).
    [Crossref] [PubMed]
  4. C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
    [Crossref] [PubMed]
  5. J. Condeelis and R. Weissleder, “In vivo imaging in cancer,” Cold Spring Harb. Perspect. Biol. 2(12), a003848 (2010).
    [Crossref] [PubMed]
  6. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  7. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  8. V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
    [Crossref] [PubMed]
  9. G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
    [Crossref] [PubMed]
  10. P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
    [Crossref] [PubMed]
  11. A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
    [Crossref] [PubMed]
  12. B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
    [Crossref] [PubMed]
  13. B. Weigelin, G. J. Bakker, and P. Friedl, “Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics,” Intravital 1(1), 32–43 (2012).
    [Crossref] [PubMed]
  14. C. F. Chang, C. Y. Chen, F. H. Chang, S. P. Tai, C. Y. Chen, C. H. Yu, Y. B. Tseng, T. H. Tsai, I. S. Liu, W. F. Su, and C. K. Sun, “Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy,” Opt. Express 16(13), 9534–9548 (2008).
    [Crossref] [PubMed]
  15. K. Harpel, R. D. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner, T. O. Matsunaga, B. Banerjee, and K. Kieu, “Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy,” Biomed. Opt. Express 7(7), 2849–2860 (2016).
    [Crossref] [PubMed]
  16. M. R. Tsai, C. Y. Lin, Y. H. Liao, and C. K. Sun, “Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin,” J. Biomed. Opt. 18(2), 026012 (2013).
    [Crossref] [PubMed]
  17. L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
    [Crossref] [PubMed]
  18. L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
    [Crossref] [PubMed]
  19. S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
    [Crossref] [PubMed]
  20. K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
    [Crossref] [PubMed]
  21. R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
    [Crossref] [PubMed]
  22. G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297(5588), 1873–1877 (2002).
    [Crossref] [PubMed]
  23. R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
    [Crossref] [PubMed]
  24. U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
    [Crossref] [PubMed]
  25. A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
    [Crossref] [PubMed]
  26. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
    [Crossref] [PubMed]
  27. G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
    [Crossref] [PubMed]
  28. C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
    [Crossref] [PubMed]
  29. C. H. Liu, D. Nevozhay, H. Zhang, S. Das, A. Schill, M. Singh, S. Aglyamov, K. V. Sokolov, and K. V. Larin, “Longitudinal elastic wave imaging using nanobomb optical coherence elastography,” Opt Lett. in press (2019).
  30. K. C. Lowe, “Perfluorochemical respiratory gas carriers: applications in medicine and biotechnology,” Sci. Prog. 80(Pt 2), 169–193 (1997).
    [PubMed]
  31. G. P. Biro, P. Blais, and A. L. Rosen, “Perfluorocarbon blood substitutes,” Crit. Rev. Oncol. Hematol. 6(4), 311–374 (1987).
    [Crossref] [PubMed]
  32. N. M. Dietz, M. J. Joyner, and M. A. Warner, “Blood substitutes: fluids, drugs, or miracle solutions?” Anesth. Analg. 82(2), 390–405 (1996).
    [PubMed]
  33. S. F. Flaim, “Pharmacokinetics and Side Effects of Perfluorocarbon-Based Blood Substitutes,” Artif. Cells Blood Substit. Immobil. Biotechnol. 22(4), 1043–1054 (1994).
    [Crossref] [PubMed]
  34. P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
    [Crossref] [PubMed]
  35. R. F. Mattrey, “Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging,” AJR Am. J. Roentgenol. 152(2), 247–252 (1989).
    [Crossref] [PubMed]
  36. E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
    [Crossref] [PubMed]
  37. E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
    [Crossref] [PubMed]
  38. A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
    [Crossref] [PubMed]
  39. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
    [Crossref] [PubMed]
  40. K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
    [Crossref] [PubMed]
  41. K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
    [Crossref] [PubMed]
  42. P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
    [Crossref] [PubMed]
  43. P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
    [Crossref] [PubMed]
  44. N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
    [Crossref] [PubMed]
  45. F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
    [Crossref] [PubMed]
  46. P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
    [Crossref] [PubMed]
  47. N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).
    [Crossref] [PubMed]
  48. Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 48(4), 260–270 (2008).
    [Crossref] [PubMed]
  49. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
    [Crossref] [PubMed]
  50. O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
    [Crossref] [PubMed]
  51. N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
    [Crossref] [PubMed]
  52. N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
    [Crossref] [PubMed]
  53. N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
    [Crossref] [PubMed]
  54. A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
    [Crossref]
  55. O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
    [Crossref] [PubMed]
  56. N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
    [Crossref] [PubMed]
  57. N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
    [Crossref] [PubMed]
  58. L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
    [Crossref] [PubMed]
  59. S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
    [Crossref] [PubMed]
  60. D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
    [Crossref] [PubMed]
  61. T. M. Kirrane and W. J. Middleton, “7-Amino-4-perfluoroheptylcoumarins: a novel class of perfluorocarbon-soluble fluorescent dyes,” J. Fluor. Chem. 62(2-3), 289–292 (1993).
    [Crossref]
  62. S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
    [Crossref] [PubMed]
  63. E. M. Sletten and T. M. Swager, “Fluorofluorophores: fluorescent fluorous chemical tools spanning the visible spectrum,” J. Am. Chem. Soc. 136(39), 13574–13577 (2014).
    [Crossref] [PubMed]
  64. J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
    [Crossref] [PubMed]
  65. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
    [Crossref] [PubMed]
  66. S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
    [Crossref] [PubMed]
  67. R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
    [Crossref] [PubMed]
  68. N. B. Elsedawy and S. J. Russell, “Oncolytic vaccines,” Expert Rev. Vaccines 12(10), 1155–1172 (2013).
    [Crossref] [PubMed]
  69. L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
    [Crossref] [PubMed]
  70. S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
    [Crossref] [PubMed]
  71. D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
    [Crossref] [PubMed]
  72. P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
    [Crossref] [PubMed]
  73. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, 2006), pp. xii, 254 p.
  74. V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
    [Crossref]
  75. V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).
  76. V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).
  77. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).
  78. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
    [Crossref] [PubMed]
  79. E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
    [Crossref] [PubMed]
  80. E. Olson, M. J. Levene, and R. Torres, “Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies,” Biomed. Opt. Express 7(8), 3089–3096 (2016).
    [Crossref] [PubMed]

2019 (2)

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

2018 (4)

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref] [PubMed]

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
[Crossref] [PubMed]

2017 (3)

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

2016 (10)

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
[Crossref] [PubMed]

K. Harpel, R. D. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner, T. O. Matsunaga, B. Banerjee, and K. Kieu, “Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy,” Biomed. Opt. Express 7(7), 2849–2860 (2016).
[Crossref] [PubMed]

E. Olson, M. J. Levene, and R. Torres, “Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies,” Biomed. Opt. Express 7(8), 3089–3096 (2016).
[Crossref] [PubMed]

2015 (6)

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

J. A. Thomas, “Optical imaging probes for biomolecules: an introductory perspective,” Chem. Soc. Rev. 44(14), 4494–4500 (2015).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

2014 (7)

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

E. M. Sletten and T. M. Swager, “Fluorofluorophores: fluorescent fluorous chemical tools spanning the visible spectrum,” J. Am. Chem. Soc. 136(39), 13574–13577 (2014).
[Crossref] [PubMed]

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
[Crossref] [PubMed]

2013 (7)

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

N. B. Elsedawy and S. J. Russell, “Oncolytic vaccines,” Expert Rev. Vaccines 12(10), 1155–1172 (2013).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

M. R. Tsai, C. Y. Lin, Y. H. Liao, and C. K. Sun, “Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin,” J. Biomed. Opt. 18(2), 026012 (2013).
[Crossref] [PubMed]

2012 (5)

B. Weigelin, G. J. Bakker, and P. Friedl, “Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics,” Intravital 1(1), 32–43 (2012).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

R. N. Germain, E. A. Robey, and M. D. Cahalan, “A decade of imaging cellular motility and interaction dynamics in the immune system,” Science 336(6089), 1676–1681 (2012).
[Crossref] [PubMed]

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

2011 (3)

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

2010 (2)

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[Crossref] [PubMed]

J. Condeelis and R. Weissleder, “In vivo imaging in cancer,” Cold Spring Harb. Perspect. Biol. 2(12), a003848 (2010).
[Crossref] [PubMed]

2009 (5)

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).
[Crossref] [PubMed]

2006 (2)

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

2005 (6)

E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
[Crossref] [PubMed]

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

K. Wolf and P. Friedl, “Functional imaging of pericellular proteolysis in cancer cell invasion,” Biochimie 87(3-4), 315–320 (2005).
[Crossref] [PubMed]

V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
[Crossref]

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

2002 (3)

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297(5588), 1873–1877 (2002).
[Crossref] [PubMed]

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

2000 (1)

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

1997 (2)

K. C. Lowe, “Perfluorochemical respiratory gas carriers: applications in medicine and biotechnology,” Sci. Prog. 80(Pt 2), 169–193 (1997).
[PubMed]

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

1996 (2)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

N. M. Dietz, M. J. Joyner, and M. A. Warner, “Blood substitutes: fluids, drugs, or miracle solutions?” Anesth. Analg. 82(2), 390–405 (1996).
[PubMed]

1994 (1)

S. F. Flaim, “Pharmacokinetics and Side Effects of Perfluorocarbon-Based Blood Substitutes,” Artif. Cells Blood Substit. Immobil. Biotechnol. 22(4), 1043–1054 (1994).
[Crossref] [PubMed]

1993 (1)

T. M. Kirrane and W. J. Middleton, “7-Amino-4-perfluoroheptylcoumarins: a novel class of perfluorocarbon-soluble fluorescent dyes,” J. Fluor. Chem. 62(2-3), 289–292 (1993).
[Crossref]

1990 (1)

A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
[Crossref]

1989 (1)

R. F. Mattrey, “Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging,” AJR Am. J. Roentgenol. 152(2), 247–252 (1989).
[Crossref] [PubMed]

1987 (1)

G. P. Biro, P. Blais, and A. L. Rosen, “Perfluorocarbon blood substitutes,” Crit. Rev. Oncol. Hematol. 6(4), 311–374 (1987).
[Crossref] [PubMed]

Achilefu, S.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Acker, H.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Aglyamov, S.

Ahrens, E. T.

E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
[Crossref] [PubMed]

E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
[Crossref] [PubMed]

Akers, W. J.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Alexander, S.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Amirsolaimani, B.

Ando, R.

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

Andresen, V.

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Antosiewicz-Bourget, J.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Arena, E. T.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Arteaga, C. L.

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

Baker, R. D.

Bakker, G. J.

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

B. Weigelin, G. J. Bakker, and P. Friedl, “Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics,” Intravital 1(1), 32–43 (2012).
[Crossref] [PubMed]

Bamber, J.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Banerjee, B.

Barzda, V.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Bazley, L.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Beaurepaire, E.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Berchner-Pfannschmidt, U.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Berge, E. S.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Bestvater, F.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Bhardwaj, N.

L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
[Crossref] [PubMed]

Biro, G. P.

G. P. Biro, P. Blais, and A. L. Rosen, “Perfluorocarbon blood substitutes,” Crit. Rev. Oncol. Hematol. 6(4), 311–374 (1987).
[Crossref] [PubMed]

Blais, P.

G. P. Biro, P. Blais, and A. L. Rosen, “Perfluorocarbon blood substitutes,” Crit. Rev. Oncol. Hematol. 6(4), 311–374 (1987).
[Crossref] [PubMed]

Bloch, S. H.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Bolewska-Pedyczak, E.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Bonacina, L.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Bonvin, E.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Brändli, A. W.

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Brody, J. D.

L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
[Crossref] [PubMed]

Bult, P.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Burns, P. N.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Cahalan, M. D.

R. N. Germain, E. A. Robey, and M. D. Cahalan, “A decade of imaging cellular motility and interaction dynamics in the immune system,” Science 336(6089), 1676–1681 (2012).
[Crossref] [PubMed]

Calle, E. A.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Campanello, L.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Carson, P. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Carter, K. A.

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

Chang, C. F.

Chang, F. H.

Chen, C. Y.

Chen, J.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Chitgupi, U.

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

Chittajallu, D. R.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Christensen, D. A.

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[Crossref] [PubMed]

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 48(4), 260–270 (2008).
[Crossref] [PubMed]

Chudakov, D. M.

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
[Crossref] [PubMed]

Cisek, R.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Colle, M. A.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Collinson, L.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Combettes, L.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Condeelis, J.

J. Condeelis and R. Weissleder, “In vivo imaging in cancer,” Cold Spring Harb. Perspect. Biol. 2(12), a003848 (2010).
[Crossref] [PubMed]

Cook, R. S.

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

Coussens, L. M.

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

Cui, L.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Cui, M.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Daly, W. T.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Danuser, G.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Das, S.

Dayton, P. A.

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

de Groot, H.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

de Jong, N.

O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
[Crossref] [PubMed]

Débarre, D.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Deryugina, E.

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

DeZonia, B. E.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Diceglie, C.

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

Dietz, N. M.

N. M. Dietz, M. J. Joyner, and M. A. Warner, “Blood substitutes: fluids, drugs, or miracle solutions?” Anesth. Analg. 82(2), 390–405 (1996).
[PubMed]

Dietzel, S.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Dimitrievska, S.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Doinikov, A.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Donnelly, E. M.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

Dubreil, L.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Edington, C.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Efros, A. L.

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

Egbulefu, C.

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Eldevik, O. P.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Eliceiri, K. W.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Elsedawy, N. B.

N. B. Elsedawy and S. J. Russell, “Oncolytic vaccines,” Expert Rev. Vaccines 12(10), 1155–1172 (2013).
[Crossref] [PubMed]

Emelianov, S.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

Fabre, A.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Feingold, S.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Ferenz, K. B.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Fernandes, D. A.

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref] [PubMed]

Ferrara, K. W.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Feurer, T.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Figdor, C. G.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

Flaim, S. F.

S. F. Flaim, “Pharmacokinetics and Side Effects of Perfluorocarbon-Based Blood Substitutes,” Artif. Cells Blood Substit. Immobil. Biotechnol. 22(4), 1043–1054 (1994).
[Crossref] [PubMed]

Fleurisson, R.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Flores, R.

E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
[Crossref] [PubMed]

Florian, S.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Fontana, G.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Foster, F. S.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Fowlkes, J. B.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Friedl, P.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

B. Weigelin, G. J. Bakker, and P. Friedl, “Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics,” Intravital 1(1), 32–43 (2012).
[Crossref] [PubMed]

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

K. Wolf and P. Friedl, “Functional imaging of pericellular proteolysis in cancer cell invasion,” Biochimie 87(3-4), 315–320 (2005).
[Crossref] [PubMed]

Gao, Z.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 48(4), 260–270 (2008).
[Crossref] [PubMed]

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).
[Crossref] [PubMed]

Gariepy, J.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Gerber-Lemaire, S.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Germain, R. N.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

R. N. Germain, E. A. Robey, and M. D. Cahalan, “A decade of imaging cellular motility and interaction dynamics in the immune system,” Science 336(6089), 1676–1681 (2012).
[Crossref] [PubMed]

Gil, D. A.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Gilson, R. C.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

Goding, C.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Griffith, L. G.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Gritsenko, P. G.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Gro-Heitfeld, C.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Gull, M.

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Gupta, R.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Hacker, M.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Hallam, K. A.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

Hama, H.

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

Hammerich, L.

L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
[Crossref] [PubMed]

Han, Z.

Hannah, A.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Hannah, A. S.

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

Harpel, K.

Harriss, B. I.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Hartman, R. K.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

Helfer, B. M.

E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hermann, S.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Hernández-Gil, J.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Heupel, W. M.

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Hiner, M. C.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Hirn, S.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Hirschberg, M.

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Hoffman, R. M.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Homan, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Huang, A.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Huang, W. C.

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

Ilina, O.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Iwamoto, Y.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Janjic, J. M.

S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
[Crossref] [PubMed]

Jeong, E. K.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Jordan, P.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Joyner, M. J.

N. M. Dietz, M. J. Joyner, and M. A. Warner, “Blood substitutes: fluids, drugs, or miracle solutions?” Anesth. Analg. 82(2), 390–405 (1996).
[PubMed]

Kabalnov, A. S.

A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
[Crossref]

Kaushik, G.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Kennedy, A.

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).
[Crossref] [PubMed]

Kennedy, A. M.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[Crossref] [PubMed]

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 48(4), 260–270 (2008).
[Crossref] [PubMed]

Kieu, K.

Kilin, V.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Kim, T.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Kirrane, T. M.

T. M. Kirrane and W. J. Middleton, “7-Amino-4-perfluoroheptylcoumarins: a novel class of perfluorocarbon-soluble fluorescent dyes,” J. Fluor. Chem. 62(2-3), 289–292 (1993).
[Crossref]

Kirsch, M.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Klajer, C.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Kochubey, V. I.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

Kohler, R. H.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Kohrt, H. E.

L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
[Crossref] [PubMed]

Kolios, M. C.

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref] [PubMed]

Kon, I. L.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Kong, L.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Krause, M.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

Kripfgans, O. D.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Krombach, F.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Kugel, Y.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Lagalice, L.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Lämmermann, T.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Larin, K. V.

Laudien, J.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Ledevin, M.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Lee, J. H.

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

Lee, M.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Leroux, I.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Levene, M. J.

E. Olson, M. J. Levene, and R. Torres, “Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies,” Biomed. Opt. Express 7(8), 3089–3096 (2016).
[Crossref] [PubMed]

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Liao, Y. H.

M. R. Tsai, C. Y. Lin, Y. H. Liao, and C. K. Sun, “Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin,” J. Biomed. Opt. 18(2), 026012 (2013).
[Crossref] [PubMed]

Lin, C. P.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Lin, C. Y.

M. R. Tsai, C. Y. Lin, Y. H. Liao, and C. K. Sun, “Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin,” J. Biomed. Opt. 18(2), 026012 (2013).
[Crossref] [PubMed]

Lin, S.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297(5588), 1873–1877 (2002).
[Crossref] [PubMed]

Little, J. P.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Liu, C. H.

Liu, I. S.

Liu, X.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Lo Dico, A.

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

Long, N.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Losert, W.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Lovell, J. F.

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

Lovo, C.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Lowe, K. C.

K. C. Lowe, “Perfluorochemical respiratory gas carriers: applications in medicine and biotechnology,” Sci. Prog. 80(Pt 2), 169–193 (1997).
[PubMed]

Lucignani, G.

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

Luke, G.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Luke, G. P.

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

Lukyanov, K. A.

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
[Crossref] [PubMed]

Lukyanov, S.

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
[Crossref] [PubMed]

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Luois, S.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Luois, S. H.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

Makarov, K. N.

A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
[Crossref]

Maksimova, I. L.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Marais, R.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Martelli, C.

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

Matsunaga, T. O.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

K. Harpel, R. D. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner, T. O. Matsunaga, B. Banerjee, and K. Kieu, “Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy,” Biomed. Opt. Express 7(7), 2849–2860 (2016).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Matsuura, N.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Mattrey, R. F.

R. F. Mattrey, “Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging,” AJR Am. J. Roentgenol. 152(2), 247–252 (1989).
[Crossref] [PubMed]

Mavlutov, A. H.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

Mavlutov, A. K.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Mayer, C.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

McFarland, R. J.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Mehravar, S.

Middleton, W. J.

T. M. Kirrane and W. J. Middleton, “7-Amino-4-perfluoroheptylcoumarins: a novel class of perfluorocarbon-soluble fluorescent dyes,” J. Fluor. Chem. 62(2-3), 289–292 (1993).
[Crossref]

Miller, D. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Mishin, A. A.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Mitchison, T. J.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Miyawaki, A.

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

Mizuno, H.

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

Mohan, P.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Morel, P. A.

E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
[Crossref] [PubMed]

Mullin, L. B.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

Murphy, W. L.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Naglav, D.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Nair, A.

Nam, K. H.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[Crossref] [PubMed]

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

Nekolla, A. K.

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Nesmeyanov, A. N.

A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
[Crossref]

Nevozhay, D.

Ng, K. K.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Niklason, L. E.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

O’Hanlon, C. F.

E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
[Crossref] [PubMed]

Olson, E.

Orth, J. D.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Ottobrini, L.

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

Parker, D. L.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Passemard, S.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Patel, S. K.

S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
[Crossref] [PubMed]

Patrick, M. J.

S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
[Crossref] [PubMed]

Patterson, G. H.

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297(5588), 1873–1877 (2002).
[Crossref] [PubMed]

Payne, A.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Pena, A. M.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Penrose, K.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Pinner, S.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Pircher, J.

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Pohl, U.

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Pollock, J. A.

S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
[Crossref] [PubMed]

Porwol, T.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Rapoport, N.

N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[Crossref] [PubMed]

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).
[Crossref] [PubMed]

Rapoport, N. Y.

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 48(4), 260–270 (2008).
[Crossref] [PubMed]

Rehberg, M.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Reznik, N.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Robey, E. A.

R. N. Germain, E. A. Robey, and M. D. Cahalan, “A decade of imaging cellular motility and interaction dynamics in the immune system,” Science 336(6089), 1676–1681 (2012).
[Crossref] [PubMed]

Rosen, A. L.

G. P. Biro, P. Blais, and A. L. Rosen, “Perfluorocarbon blood substitutes,” Crit. Rev. Oncol. Hematol. 6(4), 311–374 (1987).
[Crossref] [PubMed]

Ross, W. D.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Rouger, K.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Rueden, C. T.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Russell, S. J.

N. B. Elsedawy and S. J. Russell, “Oncolytic vaccines,” Expert Rev. Vaccines 12(10), 1155–1172 (2013).
[Crossref] [PubMed]

Sahai, E.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Sarder, P.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Scaife, C.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Scaife, C. L.

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

Schacht, V.

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schanne-Klein, M. C.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Schill, A.

Schindelin, J.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Schirda, C.

E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
[Crossref] [PubMed]

Schleder, C.

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

Schnepf, A.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Schulz, S.

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

Schumann, P.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Schwartz, M. P.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Sellner, S.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Seo, M.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Shah, A.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Shao, S.

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

Sharrock, K.

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Shcherbakova, O. V.

A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
[Crossref]

Shea, J.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Shea, J. E.

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

Sheeran, P. S.

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Shpak, O.

O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
[Crossref] [PubMed]

Singh, M.

Skala, M. C.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

Sletten, E. M.

E. M. Sletten and T. M. Swager, “Fluorofluorophores: fluorescent fluorous chemical tools spanning the visible spectrum,” J. Am. Chem. Soc. 136(39), 13574–13577 (2014).
[Crossref] [PubMed]

Sokolov, K. V.

Som, A.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

Soref, C.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Spiess, E.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Stanziola, A.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Stobrawa, G.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Su, W. F.

Sudlow, G. P.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Sun, C. K.

Supatto, W.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Swager, T. M.

E. M. Sletten and T. M. Swager, “Fluorofluorophores: fluorescent fluorous chemical tools spanning the visible spectrum,” J. Am. Chem. Soc. 136(39), 13574–13577 (2014).
[Crossref] [PubMed]

Tai, S. P.

Tang, J.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Tang, M. X.

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Tang, R.

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Te Lindert, M.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

Te Riet, J.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

Thomas, J. A.

J. A. Thomas, “Optical imaging probes for biomolecules: an introductory perspective,” Chem. Soc. Rev. 44(14), 4494–4500 (2015).
[Crossref] [PubMed]

Thomson, J. A.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Todd, N.

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

Tokarz, D.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Torr, E.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Torres, R.

Tsai, M. R.

M. R. Tsai, C. Y. Lin, Y. H. Liao, and C. K. Sun, “Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin,” J. Biomed. Opt. 18(2), 026012 (2013).
[Crossref] [PubMed]

Tsai, T. H.

Tseng, Y. B.

Tuchin, S. V.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

Tuchin, V. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
[Crossref]

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Uhl, B.

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Uhl, P.

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

Vagner, J.

van Rheenen, J.

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

Verkhusha, V. V.

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
[Crossref] [PubMed]

Versluis, M.

O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
[Crossref] [PubMed]

Verweij, M.

O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
[Crossref] [PubMed]

Vesuna, S.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

von Andrian, U. H.

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

Vullings, M.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Walsh, A. J.

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

Walter, A. E.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Wang, C.

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Wang, F.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Warner, M. A.

N. M. Dietz, M. J. Joyner, and M. A. Warner, “Blood substitutes: fluids, drugs, or miracle solutions?” Anesth. Analg. 82(2), 390–405 (1996).
[PubMed]

Weigelin, B.

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

B. Weigelin, G. J. Bakker, and P. Friedl, “Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics,” Intravital 1(1), 32–43 (2012).
[Crossref] [PubMed]

Weiss, S. J.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

Weissleder, R.

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

J. Condeelis and R. Weissleder, “In vivo imaging in cancer,” Cold Spring Harb. Perspect. Biol. 2(12), a003848 (2010).
[Crossref] [PubMed]

Williams, R.

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

Willis, A. L.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

Wilson, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wolf, K.

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

K. Wolf and P. Friedl, “Functional imaging of pericellular proteolysis in cancer cell invasion,” Biochimie 87(3-4), 315–320 (2005).
[Crossref] [PubMed]

Wong, V. P.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Wotzlaw, C.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Xu, H.

E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
[Crossref] [PubMed]

Yamamoto-Hino, M.

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

Yazdanfar, S.

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

Yu, C. H.

Yu, Y.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Zhao, L.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Zhao, S.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Zheng, G.

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Zhou, K.

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Zhu, D.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Zimnyakov, D. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Zutshi, R.

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Zymnyakov, D. A.

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

ACS Nano (2)

L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M. A. Colle, L. Bonacina, and K. Rouger, “Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth,” ACS Nano 11(7), 6672–6681 (2017).
[Crossref] [PubMed]

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (2)

O. Shpak, M. Verweij, N. de Jong, and M. Versluis, “Droplets, Bubbles and Ultrasound Interactions,” Adv. Exp. Med. Biol. 880, 157–174 (2016).
[Crossref] [PubMed]

N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

G. Kaushik, D. A. Gil, E. Torr, E. S. Berge, C. Soref, P. Uhl, G. Fontana, J. Antosiewicz-Bourget, C. Edington, M. P. Schwartz, L. G. Griffith, J. A. Thomson, M. C. Skala, W. T. Daly, and W. L. Murphy, “Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels,” Adv. Healthc. Mater. 8(2), e1801186 (2019).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

R. F. Mattrey, “Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging,” AJR Am. J. Roentgenol. 152(2), 247–252 (1989).
[Crossref] [PubMed]

Anesth. Analg. (1)

N. M. Dietz, M. J. Joyner, and M. A. Warner, “Blood substitutes: fluids, drugs, or miracle solutions?” Anesth. Analg. 82(2), 390–405 (1996).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. Cui, D. Tokarz, R. Cisek, K. K. Ng, F. Wang, J. Chen, V. Barzda, and G. Zheng, “Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy,” Angew. Chem. Int. Ed. Engl. 54(47), 13928–13932 (2015).
[Crossref] [PubMed]

Artif. Cells Blood Substit. Immobil. Biotechnol. (1)

S. F. Flaim, “Pharmacokinetics and Side Effects of Perfluorocarbon-Based Blood Substitutes,” Artif. Cells Blood Substit. Immobil. Biotechnol. 22(4), 1043–1054 (1994).
[Crossref] [PubMed]

Biochimie (1)

K. Wolf and P. Friedl, “Functional imaging of pericellular proteolysis in cancer cell invasion,” Biochimie 87(3-4), 315–320 (2005).
[Crossref] [PubMed]

Biomaterials (1)

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

BMC Bioinformatics (1)

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref] [PubMed]

Bubble Sci. Eng. Technol. (1)

N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,” Bubble Sci. Eng. Technol. 1(1-2), 31–39 (2009).
[Crossref] [PubMed]

Cancer Res. (1)

S. Pinner, P. Jordan, K. Sharrock, L. Bazley, L. Collinson, R. Marais, E. Bonvin, C. Goding, and E. Sahai, “Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination,” Cancer Res. 69(20), 7969–7977 (2009).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. A. Thomas, “Optical imaging probes for biomolecules: an introductory perspective,” Chem. Soc. Rev. 44(14), 4494–4500 (2015).
[Crossref] [PubMed]

Cold Spring Harb. Perspect. Biol. (1)

J. Condeelis and R. Weissleder, “In vivo imaging in cancer,” Cold Spring Harb. Perspect. Biol. 2(12), a003848 (2010).
[Crossref] [PubMed]

Crit. Rev. Oncol. Hematol. (1)

G. P. Biro, P. Blais, and A. L. Rosen, “Perfluorocarbon blood substitutes,” Crit. Rev. Oncol. Hematol. 6(4), 311–374 (1987).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Dis. Model. Mech. (1)

O. Ilina, L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, W. Losert, and P. Friedl, “Intravital microscopy of collective invasion plasticity in breast cancer,” Dis. Model. Mech. 11(9), dmm034330 (2018).
[Crossref] [PubMed]

Expert Rev. Vaccines (1)

N. B. Elsedawy and S. J. Russell, “Oncolytic vaccines,” Expert Rev. Vaccines 12(10), 1155–1172 (2013).
[Crossref] [PubMed]

Immunotherapy (1)

L. Hammerich, N. Bhardwaj, H. E. Kohrt, and J. D. Brody, “In situ vaccination for the treatment of cancer,” Immunotherapy 8(3), 315–330 (2016).
[Crossref] [PubMed]

Intravital (1)

B. Weigelin, G. J. Bakker, and P. Friedl, “Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics,” Intravital 1(1), 32–43 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

E. M. Sletten and T. M. Swager, “Fluorofluorophores: fluorescent fluorous chemical tools spanning the visible spectrum,” J. Am. Chem. Soc. 136(39), 13574–13577 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

S. K. Patel, M. J. Patrick, J. A. Pollock, and J. M. Janjic, “Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions,” J. Biomed. Opt. 18(10), 101312 (2013).
[Crossref] [PubMed]

M. R. Tsai, C. Y. Lin, Y. H. Liao, and C. K. Sun, “Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin,” J. Biomed. Opt. 18(2), 026012 (2013).
[Crossref] [PubMed]

P. Sarder, S. Yazdanfar, W. J. Akers, R. Tang, G. P. Sudlow, C. Egbulefu, and S. Achilefu, “All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes,” J. Biomed. Opt. 18(10), 106012 (2013).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, J. H. Lee, C. L. Arteaga, and M. C. Skala, “Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts,” J. Biomed. Opt. 20(2), 026004 (2015).
[Crossref] [PubMed]

J. Cell Biol. (1)

K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl, “Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force,” J. Cell Biol. 201(7), 1069–1084 (2013).
[Crossref] [PubMed]

J. Cell Sci. (1)

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

J. Control. Release (2)

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[Crossref] [PubMed]

N. Rapoport, K. H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E. K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release 153(1), 4–15 (2011).
[Crossref] [PubMed]

J. Fluor. Chem. (2)

A. S. Kabalnov, K. N. Makarov, O. V. Shcherbakova, and A. N. Nesmeyanov, “Solubility of Fluorocarbons in Water as a Key Parameter Determining Fluorocarbon Emulsion Stability,” J. Fluor. Chem. 50(3), 271–284 (1990).
[Crossref]

T. M. Kirrane and W. J. Middleton, “7-Amino-4-perfluoroheptylcoumarins: a novel class of perfluorocarbon-soluble fluorescent dyes,” J. Fluor. Chem. 62(2-3), 289–292 (1993).
[Crossref]

J. Microencapsul. (1)

J. Laudien, D. Naglav, C. Gro-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch, “Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy,” J. Microencapsul. 31(8), 738–745 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. 208(Pt 2), 108–115 (2002).
[Crossref] [PubMed]

J. Natl. Cancer Inst. (1)

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
[Crossref]

Langmuir (1)

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Laser Phys. (1)

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

Laser Phys. Lett. (1)

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, and C. Schirda, “Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI,” Magn. Reson. Med. 72(6), 1696–1701 (2014).
[Crossref] [PubMed]

Mol. Imaging (1)

P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160–174 (2006).
[Crossref] [PubMed]

Mol. Pharm. (1)

R. C. Gilson, R. Tang, A. Som, C. Klajer, P. Sarder, G. P. Sudlow, W. J. Akers, and S. Achilefu, “Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo,” Mol. Pharm. 12(12), 4237–4246 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

U. Chitgupi, S. Shao, K. A. Carter, W. C. Huang, and J. F. Lovell, “Multicolor Liposome Mixtures for Selective and Selectable Cargo Release,” Nano Lett. 18(2), 1331–1336 (2018).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

E. T. Ahrens, R. Flores, H. Xu, and P. A. Morel, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat. Biotechnol. 23(8), 983–987 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Nat. Methods (4)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

D. R. Chittajallu, S. Florian, R. H. Kohler, Y. Iwamoto, J. D. Orth, R. Weissleder, G. Danuser, and T. J. Mitchison, “In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy,” Nat. Methods 12(6), 577–585 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Innovation: Photoactivatable fluorescent proteins,” Nat. Rev. Mol. Cell Biol. 6(11), 885–890 (2005).
[Crossref] [PubMed]

Oncotarget (1)

C. Martelli, A. Lo Dico, C. Diceglie, G. Lucignani, and L. Ottobrini, “Optical imaging probes in oncology,” Oncotarget 7(30), 48753–48787 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of (1)

V. V. Tuchin, I. L. Maksimova, V. I. Kochubey, I. L. Kon, A. H. Mavlutov, A. A. Mishin, S. V. Tuchin, and D. A. Zymnyakov, “Optical and osmotic properties of human sclera,” Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ii, Proceedings Of 2979, 658–675 (1997).

P Soc Photo-Opt Ins (1)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” P Soc Photo-Opt Ins 2925, 118–142 (1996).

Photoacoustics (1)

S. Lin, A. Shah, J. Hernández-Gil, A. Stanziola, B. I. Harriss, T. O. Matsunaga, N. Long, J. Bamber, and M. X. Tang, “Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,” Photoacoustics 6, 26–36 (2017).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, “Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets,” Phys. Med. Biol. 57(21), 7205–7217 (2012).
[Crossref] [PubMed]

PLoS One (1)

S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, and M. Rehberg, “Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy,” PLoS One 9(6), e99615 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, “An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein,” Proc. Natl. Acad. Sci. U.S.A. 99(20), 12651–12656 (2002).
[Crossref] [PubMed]

Sci. Prog. (1)

K. C. Lowe, “Perfluorochemical respiratory gas carriers: applications in medicine and biotechnology,” Sci. Prog. 80(Pt 2), 169–193 (1997).
[PubMed]

Science (2)

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297(5588), 1873–1877 (2002).
[Crossref] [PubMed]

R. N. Germain, E. A. Robey, and M. D. Cahalan, “A decade of imaging cellular motility and interaction dynamics in the immune system,” Science 336(6089), 1676–1681 (2012).
[Crossref] [PubMed]

Scientifica (Cairo) (1)

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

Semin. Cell Dev. Biol. (1)

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol. 20(8), 931–941 (2009).
[Crossref] [PubMed]

Small (1)

S. Dietzel, S. Hermann, Y. Kugel, S. Sellner, B. Uhl, S. Hirn, F. Krombach, and M. Rehberg, “Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo,” Small 12(24), 3245–3257 (2016).
[Crossref] [PubMed]

Theranostics (1)

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

E. A. Calle, S. Vesuna, S. Dimitrievska, K. Zhou, A. Huang, L. Zhao, L. E. Niklason, and M. J. Levene, “The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs,” Tissue Eng. Part C Methods 20(7), 570–577 (2014).
[Crossref] [PubMed]

Ultrasonics (1)

Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 48(4), 260–270 (2008).
[Crossref] [PubMed]

Ultrasound Med. Biol. (3)

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Other (2)

C. H. Liu, D. Nevozhay, H. Zhang, S. Das, A. Schill, M. Singh, S. Aglyamov, K. V. Sokolov, and K. V. Larin, “Longitudinal elastic wave imaging using nanobomb optical coherence elastography,” Opt Lett. in press (2019).

V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, 2006), pp. xii, 254 p.

Supplementary Material (3)

NameDescription
» Visualization 1       3D projection of induced THG signals at discrete focal planes. A 3D stack was acquired beginning at z = 90 µm into the PAA gel and capturing XY images every 3 µm to a final depth of 210 µm from the coverglass (z = 0 µm) using 1280 nm excitation to d
» Visualization 2       THG detection of PFC phase-change during 2-photon excitation of a ND-Cy3 suspension. A small region (44x44 µm) in a water solution of ND-Cy3 nanodroplets was subjected to continuous (0-200 seconds) excitation with 1280 nm for detecting THG signals an
» Visualization 3       ND-Cy3 nanodroplets excited in 3D collagen I matrix with 4T1 murine breast cancer cells. THG (420/50 nm) and GFP-Lifeact/actin (525/50 nm) signals were detected by continuous 1280 nm excitation (0-400 seconds). At 50 seconds, two-photon 1090 nm (indi

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of a nanodroplet with lipid coating and PFC core containing dye molecules (ND-Cy3); (b) a photograph of washed preparations of “blank” nanodroplets with no dye (ND-B, left) and ND-Cy3 (right); (c) size distributions of nanodroplets measured by dynamic light scattering (intensity distribution); (d) difference in fluorescence between washed ND-B and ND-Cy3 nanodroplets at the same concentrations.
Fig. 2
Fig. 2 Phase-change of nanodroplets with applied two-photon excitation. (a) Schematic of the experiment. Note, that both laser beams were delivered through the same objective. Single focal planes in gels with embedded ND-Cy3 (b, c, d) and ND-B (e, f, g) were continuously imaged with 1280 nm excitation for phase-change signal detection. No signal was registered in ND-Cy3 sample before 1100 nm excitation that was started after 50 seconds (b). Phase-change signal was registered during (c) 1100 nm laser excitation and (d) after its removal at 350 seconds. A similar sequence with extended 1100 nm excitation showed minimal signals for ND-B (e) before, and (f, g) during 1100 nm laser excitation starting after 50 and ending at 400 seconds; an arrowhead points to a rare, sporadic event. Scale bars = 10 µm.
Fig. 3
Fig. 3 PFC nanodroplets phase-change signals are a THG process. Single focal plane images of n = 5 microbubbles were collected using 1280 nm excitation over a range of laser powers (89-186 mW). Log-log transformed signal-power data sets (colored circles, n = 5) from 5 microbubbles at 4 independent positions are plotted with a fit line (dashed line) that represents the means of slopes and y-intercepts obtained from linear regressions of each of the five data sets. The mean slope of ~3 indicates a third order process.
Fig. 4
Fig. 4 (a) ND-Cy3 nanodroplets embedded in a PAA gel phantom were excited in three focal planes at various depths starting from the deeper layer and moving upwards (left: experimental design). Experimental data from z-projection of 3D stack containing THG signals in the gel volume showed three separate focal planes with ND-Cy3 THG signals (right). Scale bar, 20 µm. (b) Integrated intensity measurements of THG signals as a function of z-depth into the PAA gel from the coverglass (z = 0 μm) confirm the focal nature of THG signal.
Fig. 5
Fig. 5 THG detection of PFC phase-change during 2-photon excitation of a ND-Cy3 suspension. (a) A small region (44x44 µm) in a water solution of ND-Cy3 nanodroplets was subjected to continuous (0-200 seconds) excitation with 1280 nm for detecting THG signals and after 50 seconds dually excited with activating 1090 nm laser (~168mW). THG signals were observed forming over time under dual excitation (b, c) and then the THG signal disappeared once 1090 nm excitation was removed at 150 seconds (d). Imaging concluded at 200 s. Scale bar = 5 µm (e) Size distribution of the THG signals over duration of the experiment.
Fig. 6
Fig. 6 ND-Cy3 nanodroplets excited in 3D collagen matrix with cancer cells. Laser sequence: 52-100 seconds 1090 nm and 1280 nm; 102-400 seconds 1280 nm; 460 seconds overview snapshot 1090 nm and 1280 nm. (a) Single focal plane of 4T1 murine breast cancer cells dispersed in collagen I matrix at the start of start of two-photon (1090 nm) excitation (t = 52 seconds). THG and GFP-Lifeact/actin signals are detected by continuous 1280 nm excitation (0-400 seconds) while collagen and cell nuclei are detected by 1090 nm during excitation of nanodroplets (see Methods). (b) During ~50 seconds of 1090 nm excitation, THG events are observed forming near cells (examples are marked by arrowheads in b and in c). Post-activation, THG microbubbles evolve (c-f) and expand into cells. Continuous imaging shows examples of small (d, e – solid arrows) and large (e, f – dashed arrows) microbubbles coalescence into larger microbubbles. (g) Overview using 920 nm (actin), 1090 nm (at reduced power; nuclei only), and 1280 nm (THG) ~6 minutes post ND-Cy3 activation of the defined area (dashed box) shows spatially induced THG microbubbles; note that the nuclear mCherry signal was photobleached, however cell morphology remained intact. Scale bars = 20 µm.
Fig. 7
Fig. 7 Impact of microbubble interactions with cells. Laser sequence: t = 0 snapshot 920 nm (calcein AM) and 1100 nm (mCherry); 0-50 seconds 1280 nm (THG and calcein AM); 52-132 seconds 1100 nm (activation of PFC nanodroplets) and 1280 nm (THG and calcein AM); 920 nm and 1280 nm for all other times. (a) HT1080 cells (numbered arrows) expressing H2B-mCherry and Lifeact-GFP pre-labeled with vital dye calcein AM in a collagen matrix before activation of ND-Cy3 nanodroplets. (b) Microbubble formation is visible as white spots proximal to cells 1 and 3 following activation of nanodroplets with 1100 nm (~128 mW). THG and calcein AM signals were monitored using 1280 nm and 920 nm, respectively, every 1 minute for up to 60 minutes. Inset shows all 3 cells in collagen matrix. (c and d) Mechanical perturbation of cells 1 and 3 by expanding microbubbles post activation. (e) Control showing calcein AM signal (i) dominates endogenous HT1080 Lifeact-GFP (ii) signal (~7 mW 920 nm). Scale bar = 25µm.

Metrics