Abstract

We quantified the precise zonal cartilage structural and mechanical responses to unconfined compressive loading by using simultaneous PSOCT based optical tractography and elastography imaging. Twelve bovine knee articular cartilage samples from six animals were imaged under bulk compression from 4% to 20%. The results revealed strong evidence that the conventional radial zone could be divided into two sub-zones with distinct mechanical properties. The “upper” part of the radial zone played a critical role in “absorbing” the mechanical compression. The study also showed that the zonal fiber organization greatly affected the cartilage structural and mechanical responses. A strong correlation was observed between the optical birefringence and logarithm of the Young’s modulus. These new results provide useful information for improving mechanical modeling of articular cartilage and developing better cartilage-mimetic biomaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal nonlinear optical microscopy reveals critical role of kinesin-1 in cartilage development

Sicong He, Wenqian Xue, Zhigang Duan, Qiqi Sun, Xuesong Li, Huiyan Gan, Jiandong Huang, and Jianan Y. Qu
Biomed. Opt. Express 8(3) 1771-1782 (2017)

Optical spectral reflectance of human articular cartilage – relationships with tissue structure, composition and mechanical properties

Jussi Kinnunen, Simo Saarakkala, Markku Hauta-Kasari, Pasi Vahimaa, and Jukka S. Jurvelin
Biomed. Opt. Express 2(5) 1394-1402 (2011)

Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher’s discriminant analysis

Zhi-Hua Mao, Jian-Hua Yin, Xue-Xi Zhang, Xiao Wang, and Yang Xia
Biomed. Opt. Express 7(2) 448-453 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
    [PubMed]
  2. P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
    [Crossref] [PubMed]
  3. S. J. Matcher, “What can biophotonics tell us about the 3D microstructure of articular cartilage?” Quant. Imaging Med. Surg. 5(1), 143–158 (2015).
    [PubMed]
  4. M. Ravanfar and G. Yao, “Measurement of biaxial optical birefringence in articular cartilage,” Appl. Opt. 58(8), 2021–2027 (2019).
    [Crossref] [PubMed]
  5. K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
    [Crossref] [PubMed]
  6. S. Moeinzadeh, S. R. Pajoum Shariati, and E. Jabbari, “Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells,” Biomaterials 92, 57–70 (2016).
    [Crossref] [PubMed]
  7. M. Younesi, V. M. Goldberg, and O. Akkus, “A micro-architecturally biomimetic collagen template for mesenchymal condensation based cartilage regeneration,” Acta Biomater. 30, 212–221 (2016).
    [Crossref] [PubMed]
  8. M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
    [Crossref] [PubMed]
  9. S. K. de Visser, R. W. Crawford, and J. M. Pope, “Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging,” Osteoarthritis Cartilage 16(1), 83–89 (2008).
    [Crossref] [PubMed]
  10. J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
    [Crossref] [PubMed]
  11. A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
    [Crossref] [PubMed]
  12. D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
    [Crossref] [PubMed]
  13. L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
    [Crossref] [PubMed]
  14. M. A. McLeod, R. E. Wilusz, and F. Guilak, “Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy,” J. Biomech. 46(3), 586–592 (2013).
    [Crossref] [PubMed]
  15. H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
    [Crossref] [PubMed]
  16. P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
    [Crossref] [PubMed]
  17. C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
    [Crossref] [PubMed]
  18. M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
    [Crossref] [PubMed]
  19. Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
    [Crossref] [PubMed]
  20. C. Glaser and R. Putz, “Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity,” Osteoarthritis Cartilage 10(2), 83–99 (2002).
    [Crossref] [PubMed]
  21. Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
    [Crossref] [PubMed]
  22. S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
    [Crossref]
  23. N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
    [Crossref] [PubMed]
  24. M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
    [Crossref] [PubMed]
  25. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
    [Crossref] [PubMed]
  26. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
    [Crossref] [PubMed]
  27. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
    [Crossref] [PubMed]
  28. Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
    [Crossref] [PubMed]
  29. X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
    [Crossref] [PubMed]
  30. M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
    [Crossref] [PubMed]
  31. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  32. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  33. L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
    [Crossref] [PubMed]
  34. Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
    [Crossref] [PubMed]
  35. Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
    [Crossref] [PubMed]
  36. Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
    [Crossref] [PubMed]
  37. J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
    [Crossref] [PubMed]
  38. C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
    [Crossref] [PubMed]
  39. T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
    [Crossref] [PubMed]
  40. B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
    [Crossref]
  41. Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
    [Crossref] [PubMed]
  42. N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
    [Crossref] [PubMed]
  43. O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
    [Crossref] [PubMed]
  44. J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
    [Crossref] [PubMed]
  45. E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
    [Crossref] [PubMed]
  46. M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
    [Crossref] [PubMed]
  47. H. A. Alhadlaq and Y. Xia, “The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy,” Osteoarthritis Cartilage 12(11), 887–894 (2004).
    [Crossref] [PubMed]
  48. N. Garnov, H. Busse, and W. Gründer, “Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage,” Magn. Reson. Med. 70(1), 225–231 (2013).
    [Crossref] [PubMed]
  49. N. Wang, F. Badar, and Y. Xia, “MRI properties of a unique hypo-intense layer in degraded articular cartilage,” Phys. Med. Biol. 60(22), 8709–8721 (2015).
    [Crossref] [PubMed]
  50. J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
    [Crossref] [PubMed]
  51. C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
    [Crossref] [PubMed]
  52. L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
    [Crossref]
  53. S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
    [Crossref] [PubMed]
  54. J. L. Hyllested, K. Veje, and K. Ostergaard, “Histochemical studies of the extracellular matrix of human articular cartilage--a review,” Osteoarthritis Cartilage 10(5), 333–343 (2002).
    [Crossref] [PubMed]

2019 (1)

2018 (4)

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref] [PubMed]

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

2017 (5)

Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
[Crossref] [PubMed]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref] [PubMed]

2016 (6)

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

S. Moeinzadeh, S. R. Pajoum Shariati, and E. Jabbari, “Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells,” Biomaterials 92, 57–70 (2016).
[Crossref] [PubMed]

M. Younesi, V. M. Goldberg, and O. Akkus, “A micro-architecturally biomimetic collagen template for mesenchymal condensation based cartilage regeneration,” Acta Biomater. 30, 212–221 (2016).
[Crossref] [PubMed]

2015 (4)

S. J. Matcher, “What can biophotonics tell us about the 3D microstructure of articular cartilage?” Quant. Imaging Med. Surg. 5(1), 143–158 (2015).
[PubMed]

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

N. Wang, F. Badar, and Y. Xia, “MRI properties of a unique hypo-intense layer in degraded articular cartilage,” Phys. Med. Biol. 60(22), 8709–8721 (2015).
[Crossref] [PubMed]

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

2014 (3)

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
[Crossref] [PubMed]

2013 (3)

M. A. McLeod, R. E. Wilusz, and F. Guilak, “Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy,” J. Biomech. 46(3), 586–592 (2013).
[Crossref] [PubMed]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref] [PubMed]

N. Garnov, H. Busse, and W. Gründer, “Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage,” Magn. Reson. Med. 70(1), 225–231 (2013).
[Crossref] [PubMed]

2012 (3)

L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
[Crossref] [PubMed]

2009 (3)

S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
[Crossref]

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
[Crossref] [PubMed]

2008 (3)

S. K. de Visser, R. W. Crawford, and J. M. Pope, “Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging,” Osteoarthritis Cartilage 16(1), 83–89 (2008).
[Crossref] [PubMed]

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

2007 (3)

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
[Crossref]

2006 (1)

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

2005 (1)

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

2004 (2)

N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
[Crossref] [PubMed]

H. A. Alhadlaq and Y. Xia, “The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy,” Osteoarthritis Cartilage 12(11), 887–894 (2004).
[Crossref] [PubMed]

2003 (1)

C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
[Crossref] [PubMed]

2002 (3)

C. Glaser and R. Putz, “Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity,” Osteoarthritis Cartilage 10(2), 83–99 (2002).
[Crossref] [PubMed]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
[Crossref] [PubMed]

J. L. Hyllested, K. Veje, and K. Ostergaard, “Histochemical studies of the extracellular matrix of human articular cartilage--a review,” Osteoarthritis Cartilage 10(5), 333–343 (2002).
[Crossref] [PubMed]

2001 (2)

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

2000 (3)

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
[Crossref] [PubMed]

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

1998 (1)

M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
[Crossref] [PubMed]

1990 (1)

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
[PubMed]

Akkus, O.

M. Younesi, V. M. Goldberg, and O. Akkus, “A micro-architecturally biomimetic collagen template for mesenchymal condensation based cartilage regeneration,” Acta Biomater. 30, 212–221 (2016).
[Crossref] [PubMed]

Alhadlaq, H.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

Alhadlaq, H. A.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

H. A. Alhadlaq and Y. Xia, “The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy,” Osteoarthritis Cartilage 12(11), 887–894 (2004).
[Crossref] [PubMed]

Arkill, K. P.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Ateshian, G. A.

N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
[Crossref] [PubMed]

C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
[Crossref] [PubMed]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
[Crossref] [PubMed]

Avery, N. C.

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

Ayache, N.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
[Crossref] [PubMed]

Azinfar, L.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref] [PubMed]

Badar, F.

N. Wang, F. Badar, and Y. Xia, “MRI properties of a unique hypo-intense layer in degraded articular cartilage,” Phys. Med. Biol. 60(22), 8709–8721 (2015).
[Crossref] [PubMed]

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
[Crossref] [PubMed]

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

Barrett, R.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Bell, A. P.

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

Bell, J. S.

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

Bidthanapally, A.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

Bleuet, P.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Bottlang, M.

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

Bozynski, C. C.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

Brama, P. A. J.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Bräuer, B.

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

Brill, N.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

Broom, N.

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

Bursac, P.

P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
[Crossref] [PubMed]

Burton-Wurster, N.

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Buschmann, M. D.

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

Busse, H.

N. Garnov, H. Busse, and W. Gründer, “Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage,” Magn. Reson. Med. 70(1), 225–231 (2013).
[Crossref] [PubMed]

Butz, K. D.

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

Cai, L.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

Cairncross, A.

Chahine, N. O.

N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
[Crossref] [PubMed]

C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
[Crossref] [PubMed]

Chan, D. D.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

Chen, C. T.

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Chen, S. S.

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

Christmas, J.

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

Clark, J. M.

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
[Crossref] [PubMed]

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
[PubMed]

Crawford, R. W.

S. K. de Visser, R. W. Crawford, and J. M. Pope, “Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging,” Osteoarthritis Cartilage 16(1), 83–89 (2008).
[Crossref] [PubMed]

de Visser, S. K.

S. K. de Visser, R. W. Crawford, and J. M. Pope, “Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging,” Osteoarthritis Cartilage 16(1), 83–89 (2008).
[Crossref] [PubMed]

Deng, J. M.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
[Crossref] [PubMed]

Dickinson, M.

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

Dong, L. M.

L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
[Crossref]

Duan, D.

Ehmke, L. W.

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

Eisenberg, S. R.

P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
[Crossref] [PubMed]

Ellis, R. E.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Erne, O. K.

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

Everson, R. M.

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

Falcovitz, Y. H.

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

Famaey, N.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

Fan, C.

Finnilä, M. A. J.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Fortin, M.

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

Gannon, A. R.

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

Gao, L. L.

L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
[Crossref]

Garnov, N.

N. Garnov, H. Busse, and W. Gründer, “Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage,” Magn. Reson. Med. 70(1), 225–231 (2013).
[Crossref] [PubMed]

Gay, S.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Glaser, C.

C. Glaser and R. Putz, “Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity,” Osteoarthritis Cartilage 10(2), 83–99 (2002).
[Crossref] [PubMed]

Goldberg, V. M.

M. Younesi, V. M. Goldberg, and O. Akkus, “A micro-architecturally biomimetic collagen template for mesenchymal condensation based cartilage regeneration,” Acta Biomater. 30, 212–221 (2016).
[Crossref] [PubMed]

Goodwin, M.

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

Green, E. M.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Gründer, W.

N. Garnov, H. Busse, and W. Gründer, “Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage,” Magn. Reson. Med. 70(1), 225–231 (2013).
[Crossref] [PubMed]

Gsell, W.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

Guilak, F.

M. A. McLeod, R. E. Wilusz, and F. Guilak, “Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy,” J. Biomech. 46(3), 586–592 (2013).
[Crossref] [PubMed]

Guo, Z. Q.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
[Crossref]

Hallikainen, J.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

Hansen, F. M.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

Hargrave-Thomas, E.

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

Helminen, H. J.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

Himmelreich, U.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

Hua, T.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
[Crossref]

Hung, C. T.

N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
[Crossref] [PubMed]

C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
[Crossref] [PubMed]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
[Crossref] [PubMed]

Hunziker, E. B.

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

Hyllested, J. L.

J. L. Hyllested, K. Veje, and K. Ostergaard, “Histochemical studies of the extracellular matrix of human articular cartilage--a review,” Osteoarthritis Cartilage 10(5), 333–343 (2002).
[Crossref] [PubMed]

Hyttinen, M. M.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

Iivarinen, J. T.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Ito, K.

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
[Crossref] [PubMed]

Jabbari, E.

S. Moeinzadeh, S. R. Pajoum Shariati, and E. Jabbari, “Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells,” Biomaterials 92, 57–70 (2016).
[Crossref] [PubMed]

Jahr, H.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

James, A.

Jia, Y. W.

L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
[Crossref]

Jimenez, S. A.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Jonkers, I.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

Julkunen, P.

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

Jurvelin, J. S.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

Kääb, M. J.

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
[Crossref] [PubMed]

Kahn, D.

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Karnowski, K.

Kelly, D. J.

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

Kennedy, B. F.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Kiviranta, I.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

Kiviranta, P.

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

Korhonen, R. K.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

Larin, K. V.

Lee, J.

Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Les, C. M.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

Lewis, S.

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

Li, Q.

Lu, M.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

Lust, G.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Madey, S. M.

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

Mansfield, J. C.

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

Maroudas, A.

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

Matcher, S. J.

S. J. Matcher, “What can biophotonics tell us about the 3D microstructure of articular cartilage?” Quant. Imaging Med. Surg. 5(1), 143–158 (2015).
[PubMed]

S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
[Crossref]

Matyas, J.

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

McGrath, C. V.

P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
[Crossref] [PubMed]

McLeod, M. A.

M. A. McLeod, R. E. Wilusz, and F. Guilak, “Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy,” J. Biomech. 46(3), 586–592 (2013).
[Crossref] [PubMed]

Merhof, D.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

Moeinzadeh, S.

S. Moeinzadeh, S. R. Pajoum Shariati, and E. Jabbari, “Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells,” Biomaterials 92, 57–70 (2016).
[Crossref] [PubMed]

Moger, C. J.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Moody, J. B.

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Nagel, T.

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

Nauman, E. A.

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

Nebelung, S.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

Neu, C. P.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

Noble, P. B.

Nötzli, H. P.

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
[Crossref] [PubMed]

Oinas, J.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Ostergaard, K.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

J. L. Hyllested, K. Veje, and K. Ostergaard, “Histochemical studies of the extracellular matrix of human articular cartilage--a review,” Osteoarthritis Cartilage 10(5), 333–343 (2002).
[Crossref] [PubMed]

Pajoum Shariati, S. R.

S. Moeinzadeh, S. R. Pajoum Shariati, and E. Jabbari, “Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells,” Biomaterials 92, 57–70 (2016).
[Crossref] [PubMed]

Pan, B.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
[Crossref]

Pelletier, J. P.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Pennec, X.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
[Crossref] [PubMed]

Perchant, A.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
[Crossref] [PubMed]

Pfeiffer, F. M.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

Pope, J. M.

S. K. de Visser, R. W. Crawford, and J. M. Pope, “Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging,” Osteoarthritis Cartilage 16(1), 83–89 (2008).
[Crossref] [PubMed]

Pritzker, K. P.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Putz, R.

C. Glaser and R. Putz, “Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity,” Osteoarthritis Cartilage 10(2), 83–99 (2002).
[Crossref] [PubMed]

Qu, X.

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Rahn, B.

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

Ramakrishnan, N.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

Ravanfar, M.

M. Ravanfar and G. Yao, “Measurement of biaxial optical birefringence in articular cartilage,” Appl. Opt. 58(8), 2021–2027 (2019).
[Crossref] [PubMed]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref] [PubMed]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

Reid, J. B.

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

Revell, P. A.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Rieppo, J.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

Rieppo, L.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Ronkainen, A. P.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Saarakkala, S.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Sah, R. L.

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

Salter, D.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Sampson, D. D.

Schmitt, R.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

Schneiderman, R.

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

Shirazi-Adl, A.

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

Sommers, M. B.

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

Soulhat, J.

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

Stamenovic, D.

P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
[Crossref] [PubMed]

Thambyah, A.

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

Tingart, M.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

Trippel, S. B.

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

Truhn, D.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

van den Berg, W. B.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

van Sloun, F.

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

van Weeren, P. R.

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Vander Sloten, J.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

Vanholsbeeck, F.

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

Veje, K.

J. L. Hyllested, K. Veje, and K. Ostergaard, “Histochemical studies of the extracellular matrix of human articular cartilage--a review,” Osteoarthritis Cartilage 10(5), 333–343 (2002).
[Crossref] [PubMed]

Vercauteren, T.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
[Crossref] [PubMed]

Villiger, M.

Wang, C. C.

C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
[Crossref] [PubMed]

Wang, C. C. B.

N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
[Crossref] [PubMed]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
[Crossref] [PubMed]

Wang, N.

N. Wang, F. Badar, and Y. Xia, “MRI properties of a unique hypo-intense layer in degraded articular cartilage,” Phys. Med. Biol. 60(22), 8709–8721 (2015).
[Crossref] [PubMed]

Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
[Crossref] [PubMed]

Wang, Y.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref] [PubMed]

Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
[Crossref] [PubMed]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
[Crossref] [PubMed]

Wasala, N. B.

Wijesinghe, P.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Wilson, W.

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

Wilusz, R. E.

M. A. McLeod, R. E. Wilusz, and F. Guilak, “Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy,” J. Biomech. 46(3), 586–592 (2013).
[Crossref] [PubMed]

Winlove, C. P.

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

Wirtz, M.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

Xia, Y.

N. Wang, F. Badar, and Y. Xia, “MRI properties of a unique hypo-intense layer in degraded articular cartilage,” Phys. Med. Biol. 60(22), 8709–8721 (2015).
[Crossref] [PubMed]

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
[Crossref] [PubMed]

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

H. A. Alhadlaq and Y. Xia, “The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy,” Osteoarthritis Cartilage 12(11), 887–894 (2004).
[Crossref] [PubMed]

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

Xie, H. M.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
[Crossref]

Yao, G.

M. Ravanfar and G. Yao, “Measurement of biaxial optical birefringence in articular cartilage,” Appl. Opt. 58(8), 2021–2027 (2019).
[Crossref] [PubMed]

Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
[Crossref] [PubMed]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref] [PubMed]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
[Crossref] [PubMed]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref] [PubMed]

Yao, X.

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843–2855 (2014).
[Crossref] [PubMed]

Younesi, M.

M. Younesi, V. M. Goldberg, and O. Akkus, “A micro-architecturally biomimetic collagen template for mesenchymal condensation based cartilage regeneration,” Acta Biomater. 30, 212–221 (2016).
[Crossref] [PubMed]

Zevenbergen, L.

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

Zhang, C. Q.

L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
[Crossref]

Zhang, K.

Acta Biomater. (2)

M. Younesi, V. M. Goldberg, and O. Akkus, “A micro-architecturally biomimetic collagen template for mesenchymal condensation based cartilage regeneration,” Acta Biomater. 30, 212–221 (2016).
[Crossref] [PubMed]

J. S. Bell, J. Christmas, J. C. Mansfield, R. M. Everson, and C. P. Winlove, “Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy,” Acta Biomater. 10(6), 2574–2581 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomaterials (1)

S. Moeinzadeh, S. R. Pajoum Shariati, and E. Jabbari, “Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells,” Biomaterials 92, 57–70 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

Cells Tissues Organs (Print) (1)

M. J. Kääb, K. Ito, B. Rahn, J. M. Clark, and H. P. Nötzli, “Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscopic Study,” Cells Tissues Organs (Print) 167(2-3), 106–120 (2000).
[Crossref] [PubMed]

Connect. Tissue Res. (2)

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[Crossref] [PubMed]

J. H. Lee, F. Badar, D. Kahn, J. Matyas, X. Qu, C. T. Chen, and Y. Xia, “Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI,” Connect. Tissue Res. 55(3), 205–216 (2014).
[Crossref] [PubMed]

Eur. Cell. Mater. (1)

A. R. Gannon, T. Nagel, A. P. Bell, N. C. Avery, and D. J. Kelly, “Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network,” Eur. Cell. Mater. 29, 105–123 (2015).
[Crossref] [PubMed]

J. Anat. (1)

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
[PubMed]

J. Appl. Phys. (1)

S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
[Crossref]

J. Biomech. (5)

C. C. Wang, N. O. Chahine, C. T. Hung, and G. A. Ateshian, “Optical determination of anisotropic material properties of bovine articular cartilage in compression,” J. Biomech. 36(3), 339–353 (2003).
[Crossref] [PubMed]

P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” J. Biomech. 40(8), 1862–1870 (2007).
[Crossref] [PubMed]

M. A. McLeod, R. E. Wilusz, and F. Guilak, “Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy,” J. Biomech. 46(3), 586–592 (2013).
[Crossref] [PubMed]

N. O. Chahine, C. C. B. Wang, C. T. Hung, and G. A. Ateshian, “Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression,” J. Biomech. 37(8), 1251–1261 (2004).
[Crossref] [PubMed]

O. K. Erne, J. B. Reid, L. W. Ehmke, M. B. Sommers, S. M. Madey, and M. Bottlang, “Depth-dependent strain of patellofemoral articular cartilage in unconfined compression,” J. Biomech. 38(4), 667–672 (2005).
[Crossref] [PubMed]

J. Biomech. Eng. (4)

M. Fortin, J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng. 122(2), 189–195 (2000).
[Crossref] [PubMed]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124(5), 557–567 (2002).
[Crossref] [PubMed]

P. Bursać, C. V. McGrath, S. R. Eisenberg, and D. Stamenović, “A microstructural model of elastostatic properties of articular cartilage in confined compression,” J. Biomech. Eng. 122(4), 347–353 (2000).
[Crossref] [PubMed]

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage collagen matrix reorientation and displacement in response to surface loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref] [PubMed]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref] [PubMed]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1–10 (2017).
[Crossref] [PubMed]

J. Biophotonics (1)

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref] [PubMed]

J. Orthop. Res. (1)

M. J. Kääb, K. Ito, J. M. Clark, and H. P. Nötzli, “Deformation of articular cartilage collagen structure under static and cyclic loading,” J. Orthop. Res. 16(6), 743–751 (1998).
[Crossref] [PubMed]

J. Struct. Biol. (1)

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[Crossref] [PubMed]

Magn. Reson. Med. (2)

Y. Xia, N. Wang, J. Lee, and F. Badar, “Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions,” Magn. Reson. Med. 65(6), 1733–1737 (2011).
[Crossref] [PubMed]

N. Garnov, H. Busse, and W. Gründer, “Angle-sensitive MRI for quantitative analysis of fiber-network deformations in compressed cartilage,” Magn. Reson. Med. 70(1), 225–231 (2013).
[Crossref] [PubMed]

Mater. Sci. Eng. C (1)

L. L. Gao, C. Q. Zhang, L. M. Dong, and Y. W. Jia, “Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression,” Mater. Sci. Eng. C 32(2), 119–125 (2012).
[Crossref]

Microsc. Res. Tech. (1)

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Neuroimage (1)

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage 45(1Suppl), S61–S72 (2009).
[Crossref] [PubMed]

Opt. Eng. (1)

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46(3), 033601 (2007).
[Crossref]

Opt. Lett. (1)

Osteoarthritis Cartilage (9)

Y. Xia, J. B. Moody, N. Burton-Wurster, and G. Lust, “Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage,” Osteoarthritis Cartilage 9(5), 393–406 (2001).
[Crossref] [PubMed]

C. Glaser and R. Putz, “Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity,” Osteoarthritis Cartilage 10(2), 83–99 (2002).
[Crossref] [PubMed]

L. Zevenbergen, W. Gsell, L. Cai, D. D. Chan, N. Famaey, J. Vander Sloten, U. Himmelreich, C. P. Neu, and I. Jonkers, “Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage,” Osteoarthritis Cartilage 26(12), 1699–1709 (2018).
[Crossref] [PubMed]

S. K. de Visser, R. W. Crawford, and J. M. Pope, “Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging,” Osteoarthritis Cartilage 16(1), 83–89 (2008).
[Crossref] [PubMed]

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, “Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density,” Osteoarthritis Cartilage 9(6), 561–569 (2001).
[Crossref] [PubMed]

J. L. Hyllested, K. Veje, and K. Ostergaard, “Histochemical studies of the extracellular matrix of human articular cartilage--a review,” Osteoarthritis Cartilage 10(5), 333–343 (2002).
[Crossref] [PubMed]

H. A. Alhadlaq and Y. Xia, “The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy,” Osteoarthritis Cartilage 12(11), 887–894 (2004).
[Crossref] [PubMed]

E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, and A. Thambyah, “Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states,” Osteoarthritis Cartilage 23(10), 1755–1762 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

N. Wang, F. Badar, and Y. Xia, “MRI properties of a unique hypo-intense layer in degraded articular cartilage,” Phys. Med. Biol. 60(22), 8709–8721 (2015).
[Crossref] [PubMed]

Quant. Imaging Med. Surg. (1)

S. J. Matcher, “What can biophotonics tell us about the 3D microstructure of articular cartilage?” Quant. Imaging Med. Surg. 5(1), 143–158 (2015).
[PubMed]

Sci. Rep. (3)

D. D. Chan, L. Cai, K. D. Butz, S. B. Trippel, E. A. Nauman, and C. P. Neu, “In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee,” Sci. Rep. 6(1), 19220 (2016).
[Crossref] [PubMed]

M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, and F. Vanholsbeeck, “Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation,” Sci. Rep. 8(1), 8568 (2018).
[Crossref] [PubMed]

J. Oinas, A. P. Ronkainen, L. Rieppo, M. A. J. Finnilä, J. T. Iivarinen, P. R. van Weeren, H. J. Helminen, P. A. J. Brama, R. K. Korhonen, and S. Saarakkala, “Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation,” Sci. Rep. 8(1), 11357 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The experimental setup, force-strain data, and cartilage thickness of all 12 samples. (a) A schematic drawing of the sample holder and the imaging geometry. (b) An example of a cartilage sample with labeled coordinates. (c) The tractography of the fiber orientation in the superficial zone as imaged from the cartilage synovial surface. The x, y, z coordinates were aligned with the B, C, and A scanning directions, respectively. (d) The force-strain data from 12 samples. (e) The measured cartilage thickness at different amount of compression.
Fig. 2
Fig. 2 (a) An example of the OPT intensity, tractography, and birefringence images acquired under different amount of bulk compression (0% to 20%). The size bar in the 0% intensity image indicates 0.2 mm. The dashed boxes mark the original cartilage region before compression. The dashed lines illustrate the boundaries between superficial zone (SZ), transitional zones (TZ), and radial zone (RZ). Also shown are the 1D depth profiles of (b) image intensity, (c) birefringence (∆n), (d) fiber orientation, and (e) fiber alignment under different bulk compression of the sample. These 1D results were calculated by averaging over the lateral direction for each image.
Fig. 3
Fig. 3 Example results of displacement and strain measurements calculated from the intensity images shown in Fig. 2. (a) The images of displacement and strain along the depth (x) and lateral (y) directions. The dashed boxes mark the cartilage region at the end of each compression. The dashed lines illustrate the boundaries between superficial zone (SZ), transitional zones (TZ), and radial zone (RZ), as well as between the upper radial zone (UR) and the lower radial zone (LR). The size bar indicates 0.2 mm. Also shown are the corresponding 1D depth profiles of (b) strain and (c) Young’s modulus (E) under different bulk compression for the same sample shown in Fig. 2. The zonal boundaries labeled in (b) and (c) were obtained for the sample before compression.
Fig. 4
Fig. 4 The effects of compression on the following zone-specific structural properties: (a1-a4) absolute thickness, (b1-b4) percentage thickness, (c1-c4) optical birefringence, (d1-d4) fiber orientation, and (e1-e4) fiber alignment. The box boundaries indicate the 25th/75th percentiles; and the error bars indicate the 10th/90th percentiles. The circles indicated outlying data points.
Fig. 5
Fig. 5 The average (a1-a4) zonal strain and (b1-b4) Young’s modulus measured at each compression in each zone. The box boundaries indicate the 25th/75th percentiles; and the error bars indicate the 10th/90th percentiles. The circles indicated outlying data points.
Fig. 6
Fig. 6 The contribution of each zone to the overall bulk compression (a1-a4) and the thickness gained in each zone during the compression (b1-b4). The box boundaries indicate the 25th/75th percentiles; and the error bars indicate the 10th/90th percentiles. The circles indicated outlying data points.
Fig. 7
Fig. 7 A sample with larger fiber orientation changes in the upper radial zone during compression. (a) intensity, (b) birefringence, (c) tractography, and (d) strain maps.
Fig. 8
Fig. 8 Correlation between Young’s modulus (E) and optical birefringence (∆n) at (a) 8% and (b) 16% compression. The dashed lines are linear regressions: log10E = 5.27 + 1.46 × 103∆n with r2 = 0.45 in (a) and log10E = 5.37 + 1.51 × 103∆n with r 2 = 0.43 in (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u=y'-y u y Δy u x Δx v=x'-x v y Δy v x Δx ,
{ ε y ( x,y )= u y ε x ( x,y )= v x .