Abstract

Detecting the structural changes caused by volume and pressure overload is critical to comprehending the mechanisms of physiologic and pathologic hypertrophy. This study explores the structural changes at the crystallographic level in myosin filaments in volume- and pressure-overloaded myocardia through polarization-dependent second harmonic generation microscopy. Here, for the first time, we report that the ratio of nonlinear susceptibility tensor components d33/d15 increased significantly in volume- and pressure-overloaded myocardial tissues compared with the ratio in normal mouse myocardial tissues. Through cell stretch experiments, we demonstrated that mechanical tension plays an important role in the increase of d33/d15 in volume- and pressure-overloaded myocardial tissues.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy

Maxime Rivard, Charles-André Couture, Amir K. Miri, Mathieu Laliberté, Antony Bertrand-Grenier, Luc Mongeau, and François Légaré
Biomed. Opt. Express 4(10) 2078-2086 (2013)

Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy

François Tiaho, Gaëlle Recher, and Denis Rouède
Opt. Express 15(19) 12286-12295 (2007)

Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy

Thierry Boulesteix, Emmanuel Beaurepaire, Martin-Pierre Sauviat, and Marie-Claire Schanne-Klein
Opt. Lett. 29(17) 2031-2033 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [Crossref] [PubMed]
  2. W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
    [Crossref] [PubMed]
  3. X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
    [Crossref] [PubMed]
  4. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
    [Crossref] [PubMed]
  5. C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
    [Crossref] [PubMed]
  6. A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
    [Crossref] [PubMed]
  7. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
    [Crossref] [PubMed]
  8. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
    [Crossref] [PubMed]
  9. S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
    [Crossref] [PubMed]
  10. I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
    [Crossref] [PubMed]
  11. S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy,” Biomed. Opt. Express 5(12), 4362–4373 (2014).
    [Crossref] [PubMed]
  12. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys 70(4), 1637–1643 (1979).
    [Crossref]
  13. Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
    [Crossref]
  14. H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
    [Crossref] [PubMed]
  15. Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
    [Crossref] [PubMed]
  16. H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
    [Crossref] [PubMed]
  17. J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
    [PubMed]
  18. A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
    [Crossref] [PubMed]
  19. T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004).
    [Crossref] [PubMed]
  20. F. Morady, M. M. Laks, and W. W. Parmley, “Comparison of sarcomere lengths from normal and hypertrophied inner and middle canine right ventricle,” Am. J. Physiol. 225(6), 1257–1259 (1973).
    [Crossref] [PubMed]
  21. P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
    [Crossref] [PubMed]
  22. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
    [Crossref] [PubMed]
  23. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
    [Crossref]
  24. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
    [Crossref] [PubMed]
  25. D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
    [Crossref] [PubMed]
  26. N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
    [Crossref] [PubMed]
  27. G. B. Belostotskaya and T. A. Golovanova, “Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells,” Cell Cycle 13(6), 910–918 (2014).
    [Crossref] [PubMed]
  28. M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
    [Crossref] [PubMed]
  29. P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
    [Crossref] [PubMed]
  30. K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
    [Crossref] [PubMed]
  31. I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
    [Crossref] [PubMed]
  32. R. Horowits and R. J. Podolsky, “The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments,” J. Cell Biol. 105(5), 2217–2223 (1987).
    [Crossref] [PubMed]
  33. R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” J. Mol. Med. (Berl.) 81(12), 750–756 (2003).
    [Crossref] [PubMed]
  34. M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
    [Crossref] [PubMed]
  35. W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
    [Crossref] [PubMed]
  36. R. S. Goody, “The missing link in the muscle cross-bridge cycle,” Nat. Struct. Biol. 10(10), 773–775 (2003).
    [Crossref] [PubMed]

2017 (1)

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

2016 (2)

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

2014 (4)

S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy,” Biomed. Opt. Express 5(12), 4362–4373 (2014).
[Crossref] [PubMed]

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

G. B. Belostotskaya and T. A. Golovanova, “Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells,” Cell Cycle 13(6), 910–918 (2014).
[Crossref] [PubMed]

2013 (2)

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

2011 (4)

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
[Crossref] [PubMed]

2010 (3)

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2004 (3)

T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
[Crossref] [PubMed]

2003 (4)

R. S. Goody, “The missing link in the muscle cross-bridge cycle,” Nat. Struct. Biol. 10(10), 773–775 (2003).
[Crossref] [PubMed]

R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” J. Mol. Med. (Berl.) 81(12), 750–756 (2003).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

2002 (1)

I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
[Crossref] [PubMed]

1999 (1)

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

1996 (1)

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

1994 (1)

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

1992 (1)

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

1991 (1)

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

1987 (1)

R. Horowits and R. J. Podolsky, “The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments,” J. Cell Biol. 105(5), 2217–2223 (1987).
[Crossref] [PubMed]

1986 (1)

P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
[Crossref] [PubMed]

1979 (1)

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys 70(4), 1637–1643 (1979).
[Crossref]

1973 (1)

F. Morady, M. M. Laks, and W. W. Parmley, “Comparison of sarcomere lengths from normal and hypertrophied inner and middle canine right ventricle,” Am. J. Physiol. 225(6), 1257–1259 (1973).
[Crossref] [PubMed]

Alkilani, A.

Amat-Roldan, I.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[Crossref] [PubMed]

Amat-Roldán, I.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Amemiya, Y.

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Anversa, P.

P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
[Crossref] [PubMed]

Artigas, D.

Barzda, V.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

Beaurepaire, E.

Belostotskaya, G. B.

G. B. Belostotskaya and T. A. Golovanova, “Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells,” Cell Cycle 13(6), 910–918 (2014).
[Crossref] [PubMed]

Bijnens, B.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Blanchard-Desce, M.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Borg, T.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Borg, T. K.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Boryskina, O. P.

Boulesteix, T.

Brugues, J.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

Centner, T.

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Chien, K.

R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” J. Mol. Med. (Berl.) 81(12), 750–756 (2003).
[Crossref] [PubMed]

Chien, K. R.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Cisek, R.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

Crispi, F.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

DeWalt, E. L.

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

Dopazo, J.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Dow, X. Y.

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

Dreissen, G.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Ehler, E.

M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
[Crossref] [PubMed]

Farhadifar, R.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Field, L. J.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Fink, R. H.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

Fleury, V.

Freund, I.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys 70(4), 1637–1643 (1979).
[Crossref]

Friedrich, O.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

Fukushima Kusano, K.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Fusi, L.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Gao, B. Z.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Gao, Z. B.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

García-Cañadilla, P.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

García-García, F.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Golovanova, T. A.

G. B. Belostotskaya and T. A. Golovanova, “Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells,” Cell Cycle 13(6), 910–918 (2014).
[Crossref] [PubMed]

González-Tendero, A.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Goody, R. S.

R. S. Goody, “The missing link in the muscle cross-bridge cycle,” Nat. Struct. Biol. 10(10), 773–775 (2003).
[Crossref] [PubMed]

Granzier, H.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
[Crossref] [PubMed]

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Gratacós, E.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Gregorio, C. C.

M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
[Crossref] [PubMed]

Guilbert, T.

Harris, A. N.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Hashimoto, K.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Helmes, M.

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Hersch, N.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Hoffmann, B.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Horowits, R.

R. Horowits and R. J. Podolsky, “The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments,” J. Cell Biol. 105(5), 2217–2223 (1987).
[Crossref] [PubMed]

Hoshijima, M.

R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” J. Mol. Med. (Berl.) 81(12), 750–756 (2003).
[Crossref] [PubMed]

Hostetter, D. R.

I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
[Crossref] [PubMed]

Iruretagoyena, I.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Ito, H.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Izumo, S.

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

Jahn, L.

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

Jijiwa, M.

A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
[Crossref] [PubMed]

Kajiya, F.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Kataoka, N.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Kellermayer, M.

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Kirchgeßner, N.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Kiss, B.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Knöll, R.

R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” J. Mol. Med. (Berl.) 81(12), 750–756 (2003).
[Crossref] [PubMed]

Knowlton, K. U.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Kolb, J.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Konorev, E.

A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
[Crossref] [PubMed]

Krouglov, S.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

Kulik, T. J.

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

Labeit, S.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Laks, M. M.

F. Morady, M. M. Laks, and W. W. Parmley, “Comparison of sarcomere lengths from normal and hypertrophied inner and middle canine right ventricle,” Am. J. Physiol. 225(6), 1257–1259 (1973).
[Crossref] [PubMed]

Langowitz, N.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Le Grand, Y.

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Leray, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Leroy, L.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Leychenko, A.

A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
[Crossref] [PubMed]

Linari, M.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Linke, W. A.

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Liu, H. H.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Lombardi, V.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Loza-Alvarez, P.

Ma, Z.

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Mallegol, T.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Markwald, R.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Matsuo, T.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Matter, M. L.

A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
[Crossref] [PubMed]

Merkel, R.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Methawasin, M.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Millard, A. C.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

Miller, M. K.

M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
[Crossref] [PubMed]

Miura, D.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Miyoshi, T.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Mohler, W.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

Mongin, O.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Morady, F.

F. Morady, M. M. Laks, and W. W. Parmley, “Comparison of sarcomere lengths from normal and hypertrophied inner and middle canine right ventricle,” Am. J. Physiol. 225(6), 1257–1259 (1973).
[Crossref] [PubMed]

Morita, H.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Nakamura, K.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Needleman, D.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Nucciotti, V.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Odin, C.

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Ohe, T.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Okuyama, H.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Olivetti, G.

P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
[Crossref] [PubMed]

P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
[Crossref] [PubMed]

Parmley, W. W.

F. Morady, M. M. Laks, and W. W. Parmley, “Comparison of sarcomere lengths from normal and hypertrophied inner and middle canine right ventricle,” Am. J. Physiol. 225(6), 1257–1259 (1973).
[Crossref] [PubMed]

Pavone, F. S.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Peng, X.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Piazzesi, G.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Pirlo, R. K.

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Planas, A. M.

Podolsky, R. J.

R. Horowits and R. J. Podolsky, “The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments,” J. Cell Biol. 105(5), 2217–2223 (1987).
[Crossref] [PubMed]

Price, R. L.

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Psilodimitrakopoulos, S.

Qu, J.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Recher, G.

Renault, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Ricci, R.

P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
[Crossref] [PubMed]

Rief, M.

I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
[Crossref] [PubMed]

Rockman, H. A.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Ross, J.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Ross, R. S.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Roth, S.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys 70(4), 1637–1643 (1979).
[Crossref]

Rouède, D.

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Runyan, R.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Sacconi, L.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Sadoshima, J.

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

Samarel, A. M.

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Sattler, C.

I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
[Crossref] [PubMed]

Sauviat, M. P.

Schanne-Klein, M. C.

Schmidt, L. P.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Schmitt, P. D.

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

Schürmann, S.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

Schwaiger, I.

I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
[Crossref] [PubMed]

Shao, Y.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Shao, Y. H.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Sharp, W. W.

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Shimizu, J.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Simpson, D. G.

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Simpson, G. J.

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

Smith, J. E.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Soria, G.

Springer, R.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Steinhelper, M. E.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Stringari, C.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Strom, J.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Sugimoto, Y.

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Sullivan, S. Z.

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

Sumita Yoshikawa, W.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Takahashi, T.

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

Takaki, M.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Takezawa, Y.

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Tanaka, H.

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Terracio, L.

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Tiaho, F.

Tokarz, D.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

Tonino, P.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Torre, I.

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

Toyota, H.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Trombitás, K.

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

Tuer, A.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

Ueno, Y.

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Ulcickas, J. R. W.

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

Vanzi, F.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Vié, V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Vogel, M.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

von Wegner, F.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

Wakabayashi, K.

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Wan, Q.

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Wang, Z.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Werts, M. H.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Wolters, B.

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Wu, H. Y.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Xiang, P.

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Yagi, N.

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Yang, H.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Yang, X.

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Ye, T.

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Yoo, T. Y.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Yu, C. H.

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

Yuan, X.

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Yun, J. X.

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Am. J. Physiol. (2)

F. Morady, M. M. Laks, and W. W. Parmley, “Comparison of sarcomere lengths from normal and hypertrophied inner and middle canine right ventricle,” Am. J. Physiol. 225(6), 1257–1259 (1973).
[Crossref] [PubMed]

D. G. Simpson, W. W. Sharp, T. K. Borg, R. L. Price, L. Terracio, and A. M. Samarel, “Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure,” Am. J. Physiol. 270(4), C1075–C1087 (1996).
[Crossref] [PubMed]

Biofabrication (1)

Z. Ma, R. K. Pirlo, Q. Wan, J. X. Yun, X. Yuan, P. Xiang, T. K. Borg, and B. Z. Gao, “Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning,” Biofabrication 3(3), 034107 (2011).
[Crossref] [PubMed]

Biol. Open (1)

N. Hersch, B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann, “The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening,” Biol. Open 2(3), 351–361 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (4)

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

X. Y. Dow, E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, J. R. W. Ulcickas, and G. J. Simpson, “Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry,” Biophys. J. 111(7), 1361–1374 (2016).
[Crossref] [PubMed]

C. H. Yu, N. Langowitz, H. Y. Wu, R. Farhadifar, J. Brugues, T. Y. Yoo, and D. Needleman, “Measuring microtubule polarity in spindles with second-harmonic generation,” Biophys. J. 106(8), 1578–1587 (2014).
[Crossref] [PubMed]

K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray Diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophys. J. 67(6), 2422–2435 (1994).
[Crossref] [PubMed]

Cell Cycle (1)

G. B. Belostotskaya and T. A. Golovanova, “Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells,” Cell Cycle 13(6), 910–918 (2014).
[Crossref] [PubMed]

Circ. J. (1)

W. Sumita Yoshikawa, K. Nakamura, D. Miura, J. Shimizu, K. Hashimoto, N. Kataoka, H. Toyota, H. Okuyama, T. Miyoshi, H. Morita, K. Fukushima Kusano, T. Matsuo, M. Takaki, F. Kajiya, N. Yagi, T. Ohe, and H. Ito, “Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation,” Circ. J. 77(3), 741–748 (2013).
[Crossref] [PubMed]

Circ. Res. (1)

M. Helmes, K. Trombitás, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, “Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring,” Circ. Res. 84(11), 1339–1352 (1999).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (1)

P. Anversa, R. Ricci, G. Olivetti, and G. Olivetti, “Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review,” J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986).
[Crossref] [PubMed]

J. Biol. Chem. (1)

J. Sadoshima, L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo, “Molecular characterization of the stretch-induced adaptation of cultured cardiac cells,” J. Biol. Chem. 267(15), 10551 (1992).
[PubMed]

J. Cell Biol. (1)

R. Horowits and R. J. Podolsky, “The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments,” J. Cell Biol. 105(5), 2217–2223 (1987).
[Crossref] [PubMed]

J. Chem. Phys (1)

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys 70(4), 1637–1643 (1979).
[Crossref]

J. Comput. Chem. (1)

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

J. Mol. Med. (Berl.) (1)

R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” J. Mol. Med. (Berl.) 81(12), 750–756 (2003).
[Crossref] [PubMed]

J. Opt. (1)

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

Langmuir (1)

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Methods (1)

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith, J. Kolb, S. Labeit, and H. Granzier, “The giant protein titin regulates the length of the striated muscle thick filament,” Nat. Commun. 8(1), 1041–1052 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nat. Mater. 1(4), 232–235 (2002).
[Crossref] [PubMed]

Nat. Struct. Biol. (1)

R. S. Goody, “The missing link in the muscle cross-bridge cycle,” Nat. Struct. Biol. 10(10), 773–775 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

PLoS One (2)

I. Torre, A. González-Tendero, P. García-Cañadilla, F. Crispi, F. García-García, B. Bijnens, I. Iruretagoyena, J. Dopazo, I. Amat-Roldán, and E. Gratacós, “Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction,” PLoS One 9(11), e113067–e113075 (2014).
[Crossref] [PubMed]

A. Leychenko, E. Konorev, M. Jijiwa, and M. L. Matter, “Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes,” PLoS One 6(12), e29055 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper, L. J. Field, J. Ross, K. R. Chien, and K. R. Chien, “Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy,” Proc. Natl. Acad. Sci. U.S.A. 88(18), 8277–8281 (1991).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. H. Shao, H. H. Liu, T. Ye, T. Borg, J. Qu, X. Peng, and Z. B. Gao, “3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy,” Proc. SPIE 7903, 79030F (2011).
[Crossref]

Sci. Rep. (1)

H. Yang, L. P. Schmidt, Z. Wang, X. Yang, Y. Shao, T. K. Borg, R. Markwald, R. Runyan, and B. Z. Gao, “Dynamic myofbrillar remodeling in live cardiomyocytes under static stretch,” Sci. Rep. 6(1), 20674–20686 (2016).
[Crossref] [PubMed]

Trends Cell Biol. (1)

M. K. Miller, H. Granzier, E. Ehler, and C. C. Gregorio, “The sensitive giant: the role of titin-based stretch sensing complexes in the heart,” Trends Cell Biol. 14(3), 119–126 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) Experimental setup of the polarization-dependent SHG microscope. (B) Illustration of geometric arrangement of a single myofibril relative to the polarization of the applied excitation light field. α: the angle between the incident polarization of the excitation light and the z-axis (orientation of the myofibril). (C) The SHG signal intensity versus the polarization angle of the excitation light.
Fig. 2
Fig. 2 (A) Grooved PDMS substrate for cardiomyocyte alignment and stretch delivery. (B) PDMS culture chamber, in which the grooved PDMS served as the bottom part. (C) Frame of cell stretching device with culture chamber mounted. (D) Cell stretching device housed in the on-stage incubator.
Fig. 3
Fig. 3 (A) The arrangement of myosin filaments in a straight myofibril. The anisotropic band (A-band) is the region where myosin filaments and part of an actin filament are located; the isotropic region (I-band) is occupied partially by actin. Actin runs from the Z-disk to the center of the sarcomere. The Z-line is located in the ends of the sarcomere and defines the lateral boundaries of the sarcomere and anchors actin. (B)-(D) The linearly polarized SHG images of cardiomyocytes under (B) normal, (C) volume overload and (D) pressure overload conditions. (E) Bar plots of the heart weight to body weight ratios for normal, volume overload and pressure overload models were 3.73 ± 0.16 mg/g, 4.86 ± 0.21 mg/g and 5.72 ± 0.37 mg/g, respectively (sample size n = 3 mice/model. Bars represent mean ± SD. One-way ANOVA followed by Student’s t-tests were used to compare different groups, *P < 0.05 vs. Normal). (F) Bar plots of sarcomeric length obtained from normal and volume- and pressure-overloaded myocardial samples: 2.17 ± 0.17 μm, 2.22 ± 0.20 μm and 2.19 ± 0.14 μm, respectively. (sample size n = 60 measurements/model: 10 tissue slides were arbitrarily selected from each mouse heart; 2 measurements were made for each slide. There was no statistical difference between the three mice in each group. Bars represent mean ± SD. There was no significant difference between groups (one-way ANOVA)).
Fig. 4
Fig. 4 (A) The polarization profiles of normal, volume- and pressure-overloaded myocardial tissues. (sample size n = 60 measurements/model: 10 tissue slides were arbitrarily selected from each mouse heart, and 2 measurements were made for each slide.) (B) Bar plots of the nonlinear susceptibility tensor components (d31/d15, and d33/d15) extracted from the measurement shown in (A): For myosin filaments from normal tissue, d31/d15 value lies in the range of 1.05 ± 0.07 and d33/d15, 0.69 ± 0.06; for volume-overloaded myocardial tissues, d31/d15 and d33/d15 are 1.04 ± 0.09 and 0.91 ± 0.12, respectively; for pressure-overloaded myocardial tissues, the corresponding values are 1.10 ± 0.10 and 0.93 ± 0.13. (There was no statistical difference between the three mice in each group. Bars represent mean ± SD. One-way ANOVA followed by Student’s t-test were used to compare different groups, *P < 0.05 vs. Normal.)
Fig. 5
Fig. 5 Bar plot of the extracted ratio values of tensor components (d31/d15 and d33/d15) in myosin filaments from (A) longitudinally stretched cardiomyocytes (d31/d15 = 0.99 ± 0.09, 1.02 ± 0.08, 0.99 ± 0.08, 1.02 ± 0.11 and 1.03 ± 0.10; d33/d15 = 0.49 ± 0.05, 0.52 ± 0.04, 0.55 ± 0.04, 0.59 ± 0.05 and 0.63 ± 0.05). (B) Laterally stretched cardiomyocytes, (d31/d15 = 0.99 ± 0.09, 1.02 ± 0.08, 1.03 ± 0.10, 1.02 ± 0.09 and 1.04 ± 0.11; d33/d15 = 0.49 ± 0.05, 0.52 ± 0.04, 0.56 ± 0.04, 0.61 ± 0.06 and 0.65 ± 0.06.). (sample size n = 20 measurements /group: 6 plates of cells were prepared for each longitudinal and lateral stretch group. 2-4 measurements were made for each plate. There was no statistical difference between the 6 plates in each group. Bars represent mean ± SD. One-way ANOVA followed by Student’s t-test was used to compare different groups, *P < 0.05 vs. Control.)
Fig. 6
Fig. 6 Linearly polarized SHG images of cells before and after stretch: (A-C) longitudinal stretch and (E-G) lateral stretch. (D) The temporal response of the nonlinear susceptibility tensor components of myosin filaments after the cells were stretched by 15%. (Sample size n = 20 /group: 5 plates of cells were prepared for each longitudinal and lateral stretch group. 4 measurements were made for each plate. Bars represent mean ± SD).
Fig. 7
Fig. 7 (A) Schematic of a single sarcomere structure. (B) The myosin coil is made up of two alpha-intertwined helices. The θ is the mean harmonophore orientation angle. (C) The structure of a full-length myosin molecule was composed of the myosin coil (static parts), and a hinge region (S2) connects the two myosin heads (S1) with the myosin coil; S1 and S2 form the dynamic part. The model of double-headed rigor S1 extends from the myosin filament backbone to attach to actin to form the crossbridge.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 2ω [ ( sin2α ) 2 + ( d 31 d 15 sin 2 α+ d 33 d 15 cos 2 α ) 2 ]
d 33 = N S β< cos 3 θ> d 15 = d 31 = 1 2 N S β<cosθ sin 2 θ>
D= < cos 3 θ> <cosθ> = d 33 / d 15 2+ d 33 / d 15 = cos 2 θ e