Abstract

The blood brain barrier (BBB), a component of the brain’s natural defense system, is often a roadblock for the monitoring and treatment of neurological disorders. Recently, we introduced a technique to open the blood brain barrier through the use of laser-activated perfluorohexane nanodroplets (PFHnDs), a phase-change nanoagent that undergoes repeated vaporization and recondensation when excited by a pulsed laser. Laser-activated PFHnDs were shown to enable noninvasive and localized opening of the BBB, allowing extravasation of various sized agents into the brain tissue. In this current work, the laser-activated PFHnD-induced BBB opening is further explored. In particular, laser fluence and the number of laser pulses used for the PFHnD-induced BBB opening are examined and evaluated both qualitatively and quantitatively to determine the effect of these parameters on BBB opening. The results of these studies show trends between increased laser fluence and an increased BBB opening as well as between an increased number of laser pulses and an increased BBB opening, however, with limitations on the extent of the BBB opening after a certain number of pulses. Overall, the results of these studies serve as a guideline to choosing suitable laser parameters for safe and effective BBB opening.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening

Kristina A. Hallam, Eleanor M. Donnelly, Andrei B. Karpiouk, Robin K. Hartman, and Stanislav Y. Emelianov
Biomed. Opt. Express 9(9) 4527-4538 (2018)

Photodynamic opening of blood-brain barrier

Oxana Semyachkina-Glushkovskaya, Jürgen Kurths, Ekaterina Borisova, Sergei Sokolovski, Vanya Mantareva, Ivan Angelov, Alexander Shirokov, Nikita Navolokin, Natalia Shushunova, Alexander Khorovodov, Maria Ulanova, Madina Sagatova, Ilana Agranivich, Olga Sindeeva, Artem Gekalyuk, Anastasiya Bodrova, and Edik Rafailov
Biomed. Opt. Express 8(11) 5040-5048 (2017)

Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window

Chao Zhang, Wei Feng, Elena Vodovozova, Daria Tretiakova, Ivan Boldyrevd, Yusha Li, Jurgen Kürths, Tingting Yu, Oxana Semyachkina-Glushkovskaya, and Dan Zhu
Biomed. Opt. Express 9(10) 4850-4862 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Pardridge, “The blood-brain barrier: bottleneck in brain drug development,” NeuroRx 2(1), 3–14 (2005).
    [Crossref] [PubMed]
  2. C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
    [Crossref] [PubMed]
  3. M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
    [Crossref] [PubMed]
  4. N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
    [Crossref] [PubMed]
  5. E. E. Konofagou, “Optimization of the ultrasound-induced blood-brain barrier opening,” Theranostics 2(12), 1223–1237 (2012).
    [Crossref] [PubMed]
  6. U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
    [Crossref] [PubMed]
  7. T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
    [Crossref] [PubMed]
  8. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
    [Crossref] [PubMed]
  9. Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
    [Crossref] [PubMed]
  10. N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
    [Crossref] [PubMed]
  11. J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
    [Crossref] [PubMed]
  12. T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
    [Crossref] [PubMed]
  13. J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
    [Crossref] [PubMed]
  14. G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
    [Crossref] [PubMed]
  15. H. Chen and E. E. Konofagou, “The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure,” J. Cereb. Blood Flow Metab. 34(7), 1197–1204 (2014).
    [Crossref] [PubMed]
  16. J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
    [Crossref] [PubMed]
  17. J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
    [Crossref] [PubMed]
  18. N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med. Biol. 34(5), 834–840 (2008).
    [Crossref] [PubMed]
  19. M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
    [Crossref] [PubMed]
  20. N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med. Biol. 34(6), 930–937 (2008).
    [Crossref] [PubMed]
  21. R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures,” ACS Chem. Neurosci. 1(5), 391–398 (2010).
    [Crossref] [PubMed]
  22. C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
    [Crossref] [PubMed]
  23. A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
    [Crossref] [PubMed]
  24. N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
    [Crossref]
  25. C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
    [Crossref] [PubMed]
  26. S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
    [Crossref] [PubMed]
  27. K. A. Hallam, E. M. Donnelly, A. B. Karpiouk, R. K. Hartman, and S. Y. Emelianov, “Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening,” Biomed. Opt. Express 9(9), 4527–4538 (2018).
    [Crossref] [PubMed]
  28. P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
    [Crossref] [PubMed]
  29. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
    [Crossref] [PubMed]
  30. E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
    [Crossref] [PubMed]
  31. A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
    [Crossref] [PubMed]
  32. G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
    [Crossref] [PubMed]
  33. H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
    [Crossref] [PubMed]
  34. H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
    [Crossref] [PubMed]
  35. A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
    [Crossref] [PubMed]
  36. A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
    [Crossref] [PubMed]
  37. D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
    [Crossref] [PubMed]
  38. P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
    [Crossref] [PubMed]
  39. D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
    [Crossref]
  40. N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
    [Crossref] [PubMed]
  41. S. K. Yarmoska, H. Yoon, and S. Y. Emelianov, “Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets,” Ultrasound Med. Biol. 45(6), 1489–1499 (2019).
    [Crossref] [PubMed]
  42. D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
    [Crossref] [PubMed]
  43. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  44. H. M. Grey, J. W. Hirst, and M. Cohn, “A new mouse immunoglobulin: IgG3,” J. Exp. Med. 133(2), 289–304 (1971).
    [Crossref] [PubMed]
  45. R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
    [Crossref] [PubMed]
  46. P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
    [Crossref] [PubMed]

2019 (4)

S. K. Yarmoska, H. Yoon, and S. Y. Emelianov, “Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets,” Ultrasound Med. Biol. 45(6), 1489–1499 (2019).
[Crossref] [PubMed]

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
[Crossref]

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

2018 (5)

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

K. A. Hallam, E. M. Donnelly, A. B. Karpiouk, R. K. Hartman, and S. Y. Emelianov, “Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening,” Biomed. Opt. Express 9(9), 4527–4538 (2018).
[Crossref] [PubMed]

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
[Crossref] [PubMed]

2017 (6)

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

2016 (5)

N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

2015 (1)

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

2014 (4)

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

H. Chen and E. E. Konofagou, “The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure,” J. Cereb. Blood Flow Metab. 34(7), 1197–1204 (2014).
[Crossref] [PubMed]

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

2013 (2)

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (5)

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
[Crossref] [PubMed]

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

E. E. Konofagou, “Optimization of the ultrasound-induced blood-brain barrier opening,” Theranostics 2(12), 1223–1237 (2012).
[Crossref] [PubMed]

2011 (3)

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
[Crossref] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

2010 (2)

R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures,” ACS Chem. Neurosci. 1(5), 391–398 (2010).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

2008 (3)

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med. Biol. 34(5), 834–840 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med. Biol. 34(6), 930–937 (2008).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

2007 (1)

J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
[Crossref] [PubMed]

2006 (1)

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

2005 (1)

W. M. Pardridge, “The blood-brain barrier: bottleneck in brain drug development,” NeuroRx 2(1), 3–14 (2005).
[Crossref] [PubMed]

2004 (1)

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

2003 (1)

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[Crossref] [PubMed]

1971 (1)

H. M. Grey, J. W. Hirst, and M. Cohn, “A new mouse immunoglobulin: IgG3,” J. Exp. Med. 133(2), 289–304 (1971).
[Crossref] [PubMed]

Alexander, P. M.

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Alkins, R.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Arena, C. B.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Arvanitis, C. D.

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Aryal, M.

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Azad, T. D.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Baseri, B.

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Beccaria, K.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Bethune, A.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Bing, C.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Bolding, M.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Borden, M. A.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Brayman, A. A.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Bruce, M.

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

Burns, P. N.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Canney, M.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Capelle, L.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Carpentier, A.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Chang, J. W.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Chang, R.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Chang, W. S.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Chapelon, J. Y.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Chen, C. C.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Chen, H.

H. Chen and E. E. Konofagou, “The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure,” J. Cereb. Blood Flow Metab. 34(7), 1197–1204 (2014).
[Crossref] [PubMed]

Chen, P. Y.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Chen, Y. S.

Cheng, B.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Cho, J. S.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Cho, W. C.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Choi, J. J.

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
[Crossref] [PubMed]

Chopra, R.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures,” ACS Chem. Neurosci. 1(5), 391–398 (2010).
[Crossref] [PubMed]

Cohn, M.

H. M. Grey, J. W. Hirst, and M. Cohn, “A new mouse immunoglobulin: IgG3,” J. Exp. Med. 133(2), 289–304 (1971).
[Crossref] [PubMed]

Connolly, I. D.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Cornu, P.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Crum, L. A.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Dayton, P. A.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

Delattre, J. Y.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Donnelly, E. M.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

K. A. Hallam, E. M. Donnelly, A. B. Karpiouk, R. K. Hartman, and S. Y. Emelianov, “Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening,” Biomed. Opt. Express 9(9), 4527–4538 (2018).
[Crossref] [PubMed]

Dumani, D. S.

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

Emelianov, S.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

S. K. Yarmoska, H. Yoon, and S. Y. Emelianov, “Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets,” Ultrasound Med. Biol. 45(6), 1489–1499 (2019).
[Crossref] [PubMed]

D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
[Crossref]

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
[Crossref] [PubMed]

K. A. Hallam, E. M. Donnelly, A. B. Karpiouk, R. K. Hartman, and S. Y. Emelianov, “Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening,” Biomed. Opt. Express 9(9), 4527–4538 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

Exner, A.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Feshitan, J. A.

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Fix, S. M.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Ganguly, M.

M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
[Crossref] [PubMed]

Gorelikov, I.

Grant, G. A.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Grey, H. M.

H. M. Grey, J. W. Hirst, and M. Cohn, “A new mouse immunoglobulin: IgG3,” J. Exp. Med. 133(2), 289–304 (1971).
[Crossref] [PubMed]

Hallam, K. A.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
[Crossref]

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
[Crossref] [PubMed]

K. A. Hallam, E. M. Donnelly, A. B. Karpiouk, R. K. Hartman, and S. Y. Emelianov, “Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening,” Biomed. Opt. Express 9(9), 4527–4538 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Hannah, A.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Hannah, A. S.

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

Hartman, R. K.

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

K. A. Hallam, E. M. Donnelly, A. B. Karpiouk, R. K. Hartman, and S. Y. Emelianov, “Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening,” Biomed. Opt. Express 9(9), 4527–4538 (2018).
[Crossref] [PubMed]

Hernandez, C.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Hirst, J. W.

H. M. Grey, J. W. Hirst, and M. Cohn, “A new mouse immunoglobulin: IgG3,” J. Exp. Med. 133(2), 289–304 (1971).
[Crossref] [PubMed]

Hoang-Xuan, K.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Homan, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Hong, Y.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Horodyckid, C.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Hsu, P. H.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Huang, Y.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Hwang, J. H.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Hynynen, K.

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
[Crossref] [PubMed]

R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures,” ACS Chem. Neurosci. 1(5), 391–398 (2010).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med. Biol. 34(6), 930–937 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med. Biol. 34(5), 834–840 (2008).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[Crossref] [PubMed]

Idbaih, A.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Ironside, S.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jolesz, F.

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

Jolesz, F. A.

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[Crossref] [PubMed]

Karachi, C.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Karpiouk, A. B.

Khaing, Z.

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

Kobus, T.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

Koh, C. S.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Kolios, M.

Kong, C.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Konofagou, E. E.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

H. Chen and E. E. Konofagou, “The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure,” J. Cereb. Blood Flow Metab. 34(7), 1197–1204 (2014).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
[Crossref] [PubMed]

E. E. Konofagou, “Optimization of the ultrasound-induced blood-brain barrier opening,” Theranostics 2(12), 1223–1237 (2012).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
[Crossref] [PubMed]

Lafon, C.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Leclercq, D.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Lee, J.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Li, D. S.

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

Li, M. L.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Lin, C. Y.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Lipsman, N.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Liu, H. L.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Luke, G.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Luke, G. P.

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

Maachani, U. B.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Mainprize, T.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Marnell, C. S.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Matsunaga, T. O.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Matsuura, N.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

Matula, T. J.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

McDannold, N.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med. Biol. 34(5), 834–840 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med. Biol. 34(6), 930–937 (2008).
[Crossref] [PubMed]

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[Crossref] [PubMed]

McMahon, D.

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

Munaweera, I.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Na, Y. C.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Novell, A.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

O’Donnell, M.

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

O’Reilly, M. A.

M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
[Crossref] [PubMed]

Olumolade, O. O.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Pan, J.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Papadopoulou, V.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Pardridge, W. M.

W. M. Pardridge, “The blood-brain barrier: bottleneck in brain drug development,” NeuroRx 2(1), 3–14 (2005).
[Crossref] [PubMed]

Pernot, M.

J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
[Crossref] [PubMed]

Perry, J.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Pilatou, M.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

Poon, C.

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

Pozzo, L.

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

Profili, D.

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

Rapoport, N.

N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

Reina, V.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Remington, A.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Rich, M.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Rui, M.

Sahgal, A.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Samiotaki, G.

G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
[Crossref] [PubMed]

Sanson, M.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Santiesteban, D. Y.

D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
[Crossref]

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

Schneewind, S.

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

Sheeran, P. S.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

Sheikov, N.

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

Shin, J.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Small, S. A.

J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
[Crossref] [PubMed]

Souweidane, M. M.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Strohm, E.

Szczepanski, D.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Ting, R.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Tosi, U.

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

Trudeau, M.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Tu, J.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Tung, Y. S.

G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

VanderLaan, D.

Vignot, A.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Vlachos, F.

G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

Vykhodtseva, N.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures,” ACS Chem. Neurosci. 1(5), 391–398 (2010).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med. Biol. 34(6), 930–937 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med. Biol. 34(5), 834–840 (2008).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[Crossref] [PubMed]

Wang, C. R.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Wang, P. H.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Wang, S.

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Waspe, A. C.

M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
[Crossref] [PubMed]

Wei, K. C.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Williams, R.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Wilson, C. M.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Wilson, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Wu, S. Y.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Xi, Y.

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Yarmoska, S. K.

D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
[Crossref]

S. K. Yarmoska, H. Yoon, and S. Y. Emelianov, “Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets,” Ultrasound Med. Biol. 45(6), 1489–1499 (2019).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Yen, T. C.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Yoon, C.

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Yoon, H.

S. K. Yarmoska, H. Yoon, and S. Y. Emelianov, “Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets,” Ultrasound Med. Biol. 45(6), 1489–1499 (2019).
[Crossref] [PubMed]

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Yoon, M. S.

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Zhang, Y.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

Zheng, W.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

ACS Chem. Neurosci. (1)

R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures,” ACS Chem. Neurosci. 1(5), 391–398 (2010).
[Crossref] [PubMed]

ACS Nano (1)

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Acta Neurochir. Suppl. (Wien) (1)

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

N. Rapoport, “Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Curr. Pharm. Des. (1)

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2277–2285 (2018).
[Crossref] [PubMed]

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Int. J. Mol. Sci. (1)

U. Tosi, C. S. Marnell, R. Chang, W. C. Cho, R. Ting, U. B. Maachani, and M. M. Souweidane, “Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors,” Int. J. Mol. Sci. 18(2), 351 (2017).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. R. Wang, P. Y. Chen, K. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

H. Chen and E. E. Konofagou, “The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure,” J. Cereb. Blood Flow Metab. 34(7), 1197–1204 (2014).
[Crossref] [PubMed]

J. Control. Release (1)

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

J. Exp. Med. (1)

H. M. Grey, J. W. Hirst, and M. Cohn, “A new mouse immunoglobulin: IgG3,” J. Exp. Med. 133(2), 289–304 (1971).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

R. K. Hartman, K. A. Hallam, E. M. Donnelly, and S. Y. Emelianov, “Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging,” Laser Phys. Lett. 16(2), 025603 (2019).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

G. Samiotaki, F. Vlachos, Y. S. Tung, and E. E. Konofagou, “A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI,” Magn. Reson. Med. 67(3), 769–777 (2012).
[Crossref] [PubMed]

Med. Phys. (1)

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Nano Lett. (3)

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

D. S. Li, S. Schneewind, M. Bruce, Z. Khaing, M. O’Donnell, and L. Pozzo, “Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents,” Nano Lett. 19(1), 173–181 (2019).
[Crossref] [PubMed]

Nano Res. (1)

D. Y. Santiesteban, K. A. Hallam, S. K. Yarmoska, and S. Y. Emelianov, “Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging,” Nano Res. 12(4), 741–747 (2019).
[Crossref]

Nat. Commun. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Neuro-oncol. (1)

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. Initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-oncol. 19(suppl_6), vi275 (2017).
[Crossref]

Neuropharmacology (1)

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

NeuroRx (1)

W. M. Pardridge, “The blood-brain barrier: bottleneck in brain drug development,” NeuroRx 2(1), 3–14 (2005).
[Crossref] [PubMed]

Neurosurg. Focus (2)

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

J. Shin, C. Kong, J. S. Cho, J. Lee, C. S. Koh, M. S. Yoon, Y. C. Na, W. S. Chang, and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg. Focus 44(2), E15 (2018).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Bing, Y. Hong, C. Hernandez, M. Rich, B. Cheng, I. Munaweera, D. Szczepanski, Y. Xi, M. Bolding, A. Exner, and R. Chopra, “Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep. 8(1), 7986 (2018).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Theranostics (2)

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

E. E. Konofagou, “Optimization of the ultrasound-induced blood-brain barrier opening,” Theranostics 2(12), 1223–1237 (2012).
[Crossref] [PubMed]

Ultrasonics (1)

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

Ultrasound Med. Biol. (8)

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med. Biol. 34(5), 834–840 (2008).
[Crossref] [PubMed]

M. A. O’Reilly, A. C. Waspe, M. Ganguly, and K. Hynynen, “Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate,” Ultrasound Med. Biol. 37(4), 587–594 (2011).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med. Biol. 34(6), 930–937 (2008).
[Crossref] [PubMed]

J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, “Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice,” Ultrasound Med. Biol. 33(1), 95–104 (2007).
[Crossref] [PubMed]

S. K. Yarmoska, H. Yoon, and S. Y. Emelianov, “Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets,” Ultrasound Med. Biol. 45(6), 1489–1499 (2019).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Characterization of IR-1048 perfluorohexane nanodroplets (PFHnDs). (A) IR-1048 PFHnD size distribution, 265 ± 64.7 nm. (B) Zeta potential of IR-1048 PFHnDs, −5.2 ± 4.4 mV. (C) Normalized absorbance spectra of IR-1048 PFHnDs with a peak optical absorption near 1064 nm and Evans Blue dye with a peak optical absorption near 600 nm. Both IR-1048 PFHnDs and Evans Blue are used for in vivo blood brain barrier opening experiments.
Fig. 2
Fig. 2 Representative Evans Blue (EB) dye extravasation top view and cross-sectional photographs and hemotoxalyin & eosin (H&E) pictomicrographs for varying number of laser pulses. EB dye extravasation is outlined on the coronal cross-section with a white, dashed oval. H&E pictomicrographs are shown for both treated (right) and untreated (left) sides of the brain, with presence of red blood cells indicated by a white arrow and bright red staining within the tissue. Number of laser pulses includes (A) 0 laser pulses, (B) 300 laser pulses, (C) 600 laser pulses, and (D) 1200 laser pulses. Note: Laser pulse in A and C use the same images as laser fluence Figs. 3(A) and 3(C), and experiments shown in B–D were performed at a laser fluence of 56 mJ/cm2.
Fig. 3
Fig. 3 Representative Evans Blue (EB) dye extravasation top view and cross-sectional photographs and hemotoxalyin & eosin (H&E) pictomicrographs for varying laser fluences. EB dye extravasation is outlined on the coronal cross-section with a white, dashed oval. H&E pictomicrographs are shown for both treated (right) and untreated (left) sides of the brain, with presence of red blood cells indicated by a white arrow and bright red staining within the tissue. Laser fluences include (A) 0 mJ/cm2, (B) 38 mJ/cm2, (C) 56 mJ/cm2, and (D) 70 mJ/cm2. Note: Laser fluence A and C use the same images as laser pulse Figs. 2(A) and 2(C), and experiments shown in B–D were performed with 600 laser pulses.
Fig. 4
Fig. 4 Immunohistochemistry staining for secondary antibody IgG and DAPI. The coronal sections displayed are representative images of overall IgG (green) and DAPI (blue) fluorescence while the magnified images display the difference in IgG fluorescence between the untreated (left) and treated (right) sides. Magnified images are labeled as number of laser pulses/laser fluence (mJ/cm2).
Fig. 5
Fig. 5 Reconstructed 3D top view and right side, corner cut images of ultrasound (US, grayscale) and photoacoustic (PA, hot colormap) data for varying number of laser pulses: (A) 0 pulses, (B) 300 pulses, (C) 600 pulses, and (D) 1200 pulses. Note: Laser pulse A and C use the same images as laser fluence Figs. 6(A) and 6(C), and experiments shown in B–D were performed with a laser fluence of 56 mJ/cm2.
Fig. 6
Fig. 6 Reconstructed 3D top view and right side, corner cut images of ultrasound (US, grayscale) and photoacoustic (PA, hot colormap) data for varying laser fluences: (A) 0 mJ/cm2, (B) 38 mJ/cm2, (C) 56 mJ/cm2, and (D) 70 mJ/cm2. Note: Laser fluence A and C use the same images as laser pulse Figs. 5(A) and 5(C), and experiments shown in B–D were performed with 600 laser pulses.
Fig. 7
Fig. 7 Quantitative evaluation of fluorescence area and photoacoustic volume for the varying number of laser pulses and laser fluences used. (A) Fluorescence area vs. number of laser pulses for 300, 600, and 1200 pulses. (B) Fluorescence area vs. fluence for 38, 56, and 70 mJ/cm2. (C) Photoacoustic volume vs. number of laser pulses for 300, 600, and 1200 laser pulses. (D) Photoacoustic volume for 38, 56, and 70 mJ/cm2. The circle marker indicates the mean value calculated for each animal group. The horizontal line identifies the median, and the vertical line marked with crossbars identifies the 95% confidence interval.