Abstract

Laser ablation of bone for the purposes of osteotomy is not as well understood as ablation of homogeneous, non-biological materials such as metals and plastics. Ignition times and etch rate can vary during ablation of cortical bone. In this study, we propose the use of two techniques to optimize bone ablation at 1064nm using a coaxial nitrogen jet as an assist gas and topical application of graphite as a highly absorbing chromophore. We show a two order of magnitude reduction in mean time to ignition and variance by using the graphite topical chromophore. We also show that an increase in volumetric flow rate of the assist gas jet does show an initial increase in etch rate, but increased pressure beyond a certain point shows decreased return. This study also demonstrates a 2nd order relationship between exposure time, volumetric flow rate of nitrogen, and etch rate of cortical bone. The results of this study can be used to optimize the performance of laser ablation systems for osteotomy. This is a companion study to an earlier one carried out by Wong et al. [ Biomedical Opt. Express 6, 1 (2015)].

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Smart laser osteotomy: integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm OCT system for ablation monitoring

Jamil Jivraj, Chaoliang Chen, Yize Huang, Joel Ramjist, Yi Lu, Barry Vuong, Xijia Gu, and Victor X. D. Yang
Biomed. Opt. Express 9(12) 6374-6387 (2018)

Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications

Yize Huang, Jamil Jivraj, Jiaqi Zhou, Joel Ramjist, Ronnie Wong, Xijia Gu, and Victor X. D. Yang
Opt. Express 24(15) 16674-16686 (2016)

Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects

Ronnie Wong, Jamil Jivraj, Barry Vuong, Joel Ramjist, Nicole A. Dinn, Cuiru Sun, Yize Huang, James A. Smith, and Victor X.D. Yang
Biomed. Opt. Express 6(1) 43-53 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
    [Crossref]
  2. J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–66 (1986).
    [Crossref]
  3. R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
    [Crossref]
  4. A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press Inc., Harcourt Brace & Company, 1993).
  5. M. H. Niemz, Laser-tissue Interactions: Fundamentals and Applications (Springer Science & Business Media, 2007).
    [Crossref]
  6. T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
    [Crossref] [PubMed]
  7. B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
    [Crossref]
  8. C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
    [Crossref]
  9. D. G. Diven, J. Pohl, and M. Motamedi, “Dye-enhanced diode laser photothermal ablation of skin,” J. Am. Acad. Dermatol. 35, 211–215 (1996).
    [Crossref] [PubMed]
  10. S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
    [Crossref]
  11. Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
    [Crossref]
  12. H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
    [Crossref]
  13. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
    [Crossref]
  14. J. Jivraj, C. Chen, Y. Huang, J. Ramjist, Y. Lu, B. Vuong, X. Gu, and V. X. Yang, “Smart laser osteotomy: integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm oct system for ablation monitoring,” Biomed. Opt. Express 9, 6374–6387 (2018).
    [Crossref]
  15. P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
    [Crossref]
  16. A. Eriksson and T. Albrektsson, “Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit,” J. Prosthet. Dent. 50, 101–107 (1983).
    [Crossref] [PubMed]
  17. J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
    [Crossref]
  18. K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
    [Crossref]
  19. G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
    [Crossref]
  20. Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
    [Crossref]
  21. H. Webb, M. G. Lubner, and J. L. Hinshaw, “Thermal ablation,” in Seminars in Roentgenology, vol. 46 (Elsevier, 2011), pp. 133–141.
    [Crossref] [PubMed]
  22. J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
    [Crossref]
  23. S. J. Lee and H. J. Ha, “In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation,” IET Syst. Biol. 7, 50–55 (2013).
    [Crossref] [PubMed]
  24. N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
    [Crossref]
  25. J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).
  26. R. Wong, J. Jivraj, B. Vuong, J. Ramjist, N. A. Dinn, C. Sun, Y. Huang, J. A. Smith, and V. X. Yang, “Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects,” Biomed. Opt. Express 6, 43–53 (2015).
    [Crossref] [PubMed]
  27. J. Jivraj, Y. Huang, R. Wong, Y. Lu, B. Vuong, J. Ramjist, X. Gu, and V. Yang, “Coaxial cavity injected oct and fiber laser ablation system for real-time monitoring of ablative processes,” in Proc. SPIE BiOS, (2015), pp. 930505.
  28. Y. Lu and X. Gu, “All-fiber passively q-switched fiber laser with a sm-doped fiber saturable absorber,” Opt. Express 21, 1997–2002 (2013).
    [Crossref] [PubMed]
  29. J. T. Gabzdyl, “The effect of laser mode and coaxial gas jet on laser cutting,” Ph.D. thesis, Imperial College London (University of London) (1989).
  30. F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.
  31. J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
    [Crossref]
  32. M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
    [Crossref]
  33. E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
    [Crossref]

2019 (1)

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

2018 (2)

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

J. Jivraj, C. Chen, Y. Huang, J. Ramjist, Y. Lu, B. Vuong, X. Gu, and V. X. Yang, “Smart laser osteotomy: integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm oct system for ablation monitoring,” Biomed. Opt. Express 9, 6374–6387 (2018).
[Crossref]

2017 (1)

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

2015 (1)

2014 (3)

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

2013 (2)

S. J. Lee and H. J. Ha, “In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation,” IET Syst. Biol. 7, 50–55 (2013).
[Crossref] [PubMed]

Y. Lu and X. Gu, “All-fiber passively q-switched fiber laser with a sm-doped fiber saturable absorber,” Opt. Express 21, 1997–2002 (2013).
[Crossref] [PubMed]

2011 (1)

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

2009 (3)

Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
[Crossref]

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
[Crossref]

2006 (2)

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[Crossref]

1999 (1)

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

1997 (1)

S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
[Crossref]

1996 (1)

D. G. Diven, J. Pohl, and M. Motamedi, “Dye-enhanced diode laser photothermal ablation of skin,” J. Am. Acad. Dermatol. 35, 211–215 (1996).
[Crossref] [PubMed]

1994 (1)

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

1990 (1)

E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
[Crossref]

1989 (2)

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

1988 (1)

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
[Crossref]

1986 (1)

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–66 (1986).
[Crossref]

1983 (1)

A. Eriksson and T. Albrektsson, “Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit,” J. Prosthet. Dent. 50, 101–107 (1983).
[Crossref] [PubMed]

1981 (1)

S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
[Crossref]

Albrektsson, T.

A. Eriksson and T. Albrektsson, “Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit,” J. Prosthet. Dent. 50, 101–107 (1983).
[Crossref] [PubMed]

Aljekhedab, F.

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

Aoki, A.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Beer, R.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Ben-Yakar, A.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Berns, M. W.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

Bouclier, M.

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

Boulnois, J.-L.

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–66 (1986).
[Crossref]

Buchelt, M.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Chen, C.

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

J. Jivraj, C. Chen, Y. Huang, J. Ramjist, Y. Lu, B. Vuong, X. Gu, and V. X. Yang, “Smart laser osteotomy: integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm oct system for ablation monitoring,” Biomed. Opt. Express 9, 6374–6387 (2018).
[Crossref]

Chen, S.

H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[Crossref]

Chen, Z.

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

Chung, H. J.

Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
[Crossref]

Chung, K. Y.

Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
[Crossref]

Cruickshank, B.

S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
[Crossref]

Dahotre, N.

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

Dedemeter, D.

S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
[Crossref]

Deorajh, R.

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

Desmettre, T

S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
[Crossref]

Devoisselle, J. M

S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
[Crossref]

Dinn, N. A.

Diven, D. G.

D. G. Diven, J. Pohl, and M. Motamedi, “Dye-enhanced diode laser photothermal ablation of skin,” J. Am. Acad. Dermatol. 35, 211–215 (1996).
[Crossref] [PubMed]

Eriksson, A.

A. Eriksson and T. Albrektsson, “Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit,” J. Prosthet. Dent. 50, 101–107 (1983).
[Crossref] [PubMed]

Fabian, R. L.

E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
[Crossref]

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
[Crossref]

Fang, Q.

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

Favero, J.

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Fick, D.

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

Fraser, J. M.

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

Fried, N. M.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Gabzdyl, J. T.

J. T. Gabzdyl, “The effect of laser mode and coaxial gas jet on laser cutting,” Ph.D. thesis, Imperial College London (University of London) (1989).

Gauthier, B. E.

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

Gertzbein, S.

S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
[Crossref]

Giglio, N. C.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Gu, X.

Guo, S.

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

Ha, H. J.

S. J. Lee and H. J. Ha, “In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation,” IET Syst. Biol. 7, 50–55 (2013).
[Crossref] [PubMed]

Hasenberg, T.

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

Haugen, H. K.

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

Hinshaw, J. L.

H. Webb, M. G. Lubner, and J. L. Hinshaw, “Thermal ablation,” in Seminars in Roentgenology, vol. 46 (Elsevier, 2011), pp. 133–141.
[Crossref] [PubMed]

Hoy, C. L.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Huang, Y.

Hutchens, T. C.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Hwang, J.

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

Ironside, C.

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

Ishikawa, I.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Ishise, H.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Izumi, Y.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Jahng, A. W.

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

Jivraj, J.

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

J. Jivraj, C. Chen, Y. Huang, J. Ramjist, Y. Lu, B. Vuong, X. Gu, and V. X. Yang, “Smart laser osteotomy: integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm oct system for ablation monitoring,” Biomed. Opt. Express 9, 6374–6387 (2018).
[Crossref]

R. Wong, J. Jivraj, B. Vuong, J. Ramjist, N. A. Dinn, C. Sun, Y. Huang, J. A. Smith, and V. X. Yang, “Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects,” Biomed. Opt. Express 6, 43–53 (2015).
[Crossref] [PubMed]

J. Jivraj, Y. Huang, R. Wong, Y. Lu, B. Vuong, J. Ramjist, X. Gu, and V. Yang, “Coaxial cavity injected oct and fiber laser ablation system for real-time monitoring of ablative processes,” in Proc. SPIE BiOS, (2015), pp. 930505.

Joe, X.

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

Kakibuchi, M.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Kang, H. W.

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[Crossref]

Kapasouri, A.

S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
[Crossref]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Katterschafka, T.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Katzir, A.

A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press Inc., Harcourt Brace & Company, 1993).

Kawai, K.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Khan, R.

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

Kim, H.

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

Kim, K. H.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Kinoshita, A.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Kiss, H.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Kobler, J. B.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Kutschera, H.-P.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Lai, P.

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

Lang, S.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Latimer, C.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

lee, H.

H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[Crossref]

Lee, S. J.

S. J. Lee and H. J. Ha, “In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation,” IET Syst. Biol. 7, 50–55 (2013).
[Crossref] [PubMed]

Leung, B. Y.

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

Liaw, L.-H. L.

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

Losert, U.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

Lu, Y.

Lubner, M. G.

H. Webb, M. G. Lubner, and J. L. Hinshaw, “Thermal ablation,” in Seminars in Roentgenology, vol. 46 (Elsevier, 2011), pp. 133–141.
[Crossref] [PubMed]

Maeda, T.

K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
[Crossref]

Mitchell, V

S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
[Crossref]

Mizutani, K.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Mordon, S

S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
[Crossref]

Mordon, S. R.

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

Mortimer, K. D.

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

Motamedi, M.

D. G. Diven, J. Pohl, and M. Motamedi, “Dye-enhanced diode laser photothermal ablation of skin,” J. Am. Acad. Dermatol. 35, 211–215 (1996).
[Crossref] [PubMed]

Nau, W. H.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Nelson, J. S.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

Nguyen, N.

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

Niemz, M. H.

M. H. Niemz, Laser-tissue Interactions: Fundamentals and Applications (Springer Science & Business Media, 2007).
[Crossref]

Nishimoto, S.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Nishioka, N. S.

E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
[Crossref]

Nuss, R. C.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
[Crossref]

Oda, K.

K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
[Crossref]

Oda, S.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Okihara, S.-i.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Orenstein, A.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

Perkins, W. C.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Pitre, F. B.

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

Pohl, J.

D. G. Diven, J. Pohl, and M. Motamedi, “Dye-enhanced diode laser photothermal ablation of skin,” J. Am. Acad. Dermatol. 35, 211–215 (1996).
[Crossref] [PubMed]

Puliafito, C. A.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
[Crossref]

Rajitha Gunaratne, G.

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

Ramjist, J.

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

J. Jivraj, C. Chen, Y. Huang, J. Ramjist, Y. Lu, B. Vuong, X. Gu, and V. X. Yang, “Smart laser osteotomy: integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm oct system for ablation monitoring,” Biomed. Opt. Express 9, 6374–6387 (2018).
[Crossref]

R. Wong, J. Jivraj, B. Vuong, J. Ramjist, N. A. Dinn, C. Sun, Y. Huang, J. A. Smith, and V. X. Yang, “Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects,” Biomed. Opt. Express 6, 43–53 (2015).
[Crossref] [PubMed]

J. Jivraj, Y. Huang, R. Wong, Y. Lu, B. Vuong, J. Ramjist, X. Gu, and V. Yang, “Coaxial cavity injected oct and fiber laser ablation system for real-time monitoring of ablative processes,” in Proc. SPIE BiOS, (2015), pp. 930505.

Robertson, B.

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

Roh,

Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
[Crossref]

Ryung, M.

Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
[Crossref]

Sarkar, R.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
[Crossref]

Sasaki, K. M.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Sedlacek, T.

E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
[Crossref]

Shimokita, R.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Smith, J. A.

Sotsuka, Y.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Stein, E.

E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
[Crossref]

Sumian, C. C.

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

Sun, C.

Takasaki, A. A.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Torkian, B. A.

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

Truong, G. V.

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

Tsumano, T.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Uoshima, K.

K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
[Crossref]

Vuong, B.

Ward, A. K.

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

Watanabe, H.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Webb, H.

H. Webb, M. G. Lubner, and J. L. Hinshaw, “Thermal ablation,” in Seminars in Roentgenology, vol. 46 (Elsevier, 2011), pp. 133–141.
[Crossref] [PubMed]

Webster, P. J.

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

Welch, A. J.

H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[Crossref]

Wohl, G. R.

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

Wong, B. J.

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

Wong, R.

Wright, L. G.

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

Xuan, J.

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

Yamauchi, T.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Yang, V.

J. Jivraj, Y. Huang, R. Wong, Y. Lu, B. Vuong, J. Ramjist, X. Gu, and V. Yang, “Coaxial cavity injected oct and fiber laser ablation system for real-time monitoring of ablative processes,” in Proc. SPIE BiOS, (2015), pp. 930505.

Yang, V. X.

Yildirim, M.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Yoshida, K.

K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
[Crossref]

Yoshino, T.

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

Zhang, W.

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

Biomed. Opt. Express (2)

Clin. Oral Implant. Res. (1)

K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clin. Oral Implant. Res. 20, 782–790 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

H. W. Kang, H. lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20, 242–255 (2014).
[Crossref]

IET Syst. Biol. (1)

S. J. Lee and H. J. Ha, “In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation,” IET Syst. Biol. 7, 50–55 (2013).
[Crossref] [PubMed]

Int. J. Comput. Assist. Radiol. Surg. (1)

J. Jivraj, R. Deorajh, P. Lai, C. Chen, N. Nguyen, J. Ramjist, and V. X. Yang, “Robotic laser osteotomy through penscriptive structured light visual servoing,” Int. J. Comput. Assist. Radiol. Surg. 14, 809–818 (2019).

J. Am. Acad. Dermatol. (1)

D. G. Diven, J. Pohl, and M. Motamedi, “Dye-enhanced diode laser photothermal ablation of skin,” J. Am. Acad. Dermatol. 35, 211–215 (1996).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

N. C. Giglio, T. C. Hutchens, W. C. Perkins, C. Latimer, A. K. Ward, W. H. Nau, and N. M. Fried, “Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser,” J. Biomed. Opt. 19, 038002 (2014).
[Crossref]

J. Biophotonics (1)

J. Hwang, H. Kim, G. V. Truong, J. Xuan, T. Hasenberg, and H. W. Kang, “Dual-wavelength-assisted thermal hemostasis for treatment of benign prostate hyperplasia,” J. Biophotonics 11, e201700192 (2018).
[Crossref]

J. Dermatol. Treat. (1)

Roh, M. Ryung, H. J. Chung, and K. Y. Chung, “Effects of various parameters of the 1064 nm nd: Yag laser for the treatment of enlarged facial pores,” J. Dermatol. Treat. 20, 223–228 (2009).
[Crossref]

J. Laser Appl. (1)

P. J. Webster, L. G. Wright, K. D. Mortimer, B. Y. Leung, X. Joe, and J. M. Fraser, “Automatic real-time guidance of laser machining with inline coherent imaging,” J. Laser Appl. 23, 022001 (2011).
[Crossref]

J. Med. Eng. & Technol. (1)

G. Rajitha Gunaratne, R. Khan, D. Fick, B. Robertson, N. Dahotre, and C. Ironside, “A review of the physiological and histological effects of laser osteotomy,” J. Med. Eng. & Technol. 41, 1–12 (2017).
[Crossref]

J. Periodontol. (1)

T. Yoshino, A. Aoki, S. Oda, A. A. Takasaki, K. Mizutani, K. M. Sasaki, A. Kinoshita, H. Watanabe, I. Ishikawa, and Y. Izumi, “Long-term histologic analysis of bone tissue alteration and healing following er: Yag laser irradiation compared to electrosurgery,” J. Periodontol. 80, 82–92 (2009).
[Crossref] [PubMed]

J. Prosthet. Dent. (1)

A. Eriksson and T. Albrektsson, “Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit,” J. Prosthet. Dent. 50, 101–107 (1983).
[Crossref] [PubMed]

Lasers Med. Sci. (2)

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–66 (1986).
[Crossref]

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S.-i. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29, 1125–1129 (2014).
[Crossref]

Lasers Surg. Medicine (7)

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, and U. Losert, “Erb: Yag and hol: Yag laser osteotomy: the effect of laser ablation on bone healing,” Lasers Surg. Medicine 15, 373–381 (1994).
[Crossref]

E. Stein, T. Sedlacek, R. L. Fabian, and N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Medicine 10, 384–388 (1990).
[Crossref]

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Medicine 8, 381–391 (1988).
[Crossref]

S. Gertzbein, D. Dedemeter, B. Cruickshank, and A. Kapasouri, “The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 1, 361–373 (1981).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, and M. W. Berns, “Mid-infrared erbium: Yag laser ablation of bone: The effect of laser osteotomy on bone healing,” Lasers Surg. Medicine 9, 362–374 (1989).
[Crossref]

S Mordon, T Desmettre, J. M Devoisselle, and V Mitchell, “Selective laser photocoagulation of blood vessels in a hamster skin flap model using a specific icg formulation,” Lasers Surg. Medicine 21, 365–373 (1997).
[Crossref]

Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. (1)

C. C. Sumian, F. B. Pitre, B. E. Gauthier, M. Bouclier, and S. R. Mordon, “Laser skin resurfacing using a frequency doubled nd: Yag laser after topical application of an exogenous chromophore,” Lasers Surg. Medicine: The Off. J. Am. Soc. for Laser Medicine Surg. 25, 43–50 (1999).
[Crossref]

Opt. Express (1)

Otolaryngol. Neck Surg. (1)

B. A. Torkian, S. Guo, A. W. Jahng, L.-H. L. Liaw, Z. Chen, and B. J. Wong, “Noninvasive measurement of ablation crater size and thermal injury after co2 laser in the vocal cord with optical coherence tomography,” Otolaryngol. Neck Surg. 134, 86–91 (2006).
[Crossref]

Other (6)

A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press Inc., Harcourt Brace & Company, 1993).

M. H. Niemz, Laser-tissue Interactions: Fundamentals and Applications (Springer Science & Business Media, 2007).
[Crossref]

J. T. Gabzdyl, “The effect of laser mode and coaxial gas jet on laser cutting,” Ph.D. thesis, Imperial College London (University of London) (1989).

F. Aljekhedab, W. Zhang, J. Favero, H. K. Haugen, G. R. Wohl, and Q. Fang, “Bovine cortical bone ablation by femtosecond laser (conference presentation),” in Lasers in Dentistry XXIV, vol. 10473 (International Society for Optics and Photonics, 2018), p. 104730F.

J. Jivraj, Y. Huang, R. Wong, Y. Lu, B. Vuong, J. Ramjist, X. Gu, and V. Yang, “Coaxial cavity injected oct and fiber laser ablation system for real-time monitoring of ablative processes,” in Proc. SPIE BiOS, (2015), pp. 930505.

H. Webb, M. G. Lubner, and J. L. Hinshaw, “Thermal ablation,” in Seminars in Roentgenology, vol. 46 (Elsevier, 2011), pp. 133–141.
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 System diagram. The fiber laser system was built directly into the sample arm of the OCT based depth ranging system, allowing for real-time monitoring of the kerf bottom using m-mode imaging whilst ablating.
Fig. 2
Fig. 2 Results of ablation times for 0.5mm depth with no graphite chromophore applied and with graphite chromophore applied to bone surface. We see a dramatic improvement in mean and variance of the time it takes to reach the target depth from when the laser was activated. Y-axis is in log scale.
Fig. 3
Fig. 3 Effects of nitrogen flow during percussion ablation of medium density fiber board (MDF) for different exposure times.
Fig. 4
Fig. 4 Mean etch rate as a function of exposure time and flow rate. Etch rate is quite high during the smallest exposure window and highest nitrogen gas flow. Etch rate is seen to increase as a function of flow rate specifically, but an increase flow does not linearly translate to increase in etch rate.
Fig. 5
Fig. 5 Time progression of depth measured via inline m-mode OCT, as a function of flow rate. 30SCFH is shown to most dramatically improve ablation. 70SCFH is shown to improve slope initial ablation progression, just before 200ms.

Tables (2)

Tables Icon

Table 1 Summary of fiber laser parameters.

Tables Icon

Table 2 Summary of OCT system parameters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν etch = 0.0357 ν flow 2 + 0.002599 τ ex 2 + 11.57 ν flow 5.731 τ ex 0.008063 ν flow τ ex + 4243

Metrics