Abstract

Remodeling of tissue, such as airway smooth muscle (ASM) and extracellular matrix, is considered a key feature of airways disease. No clinically accepted diagnostic method is currently available to assess airway remodeling or the effect of treatment modalities such as bronchial thermoplasty in asthma, other than invasive airway biopsies. Optical coherence tomography (OCT) generates cross-sectional, near-histological images of airway segments and enables identification and quantification of airway wall layers based on light scattering properties only. In this study, we used a custom motorized OCT probe that combines standard and polarization sensitive OCT (PS-OCT) to visualize birefringent tissue in vivo in the airway wall of a patient with severe asthma in a minimally invasive manner. We used optic axis uniformity (OAxU) to highlight the presence of uniformly arranged fiber-like tissue, helping visualizing the abundance of ASM and connective tissue structures. Attenuation coefficient images of the airways are presented for the first time, showing superior architectural contrast compared to standard OCT images. A novel segmentation algorithm was developed to detect the surface of the endoscope sheath and the surface of the tissue. PS-OCT is an innovative imaging technique that holds promise to assess airway remodeling including ASM and connective tissue in a minimally invasive, real-time manner.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography

Qingyun Li, Karol Karnowski, Peter B. Noble, Alvenia Cairncross, Alan James, Martin Villiger, and David D. Sampson
Biomed. Opt. Express 9(11) 5437-5455 (2018)

Automated quantification of lung structures from optical coherence tomography images

Alex M. Pagnozzi, Rodney W. Kirk, Brendan F. Kennedy, David D. Sampson, and Robert A. McLaughlin
Biomed. Opt. Express 4(11) 2383-2395 (2013)

Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature

Hamid Pahlevaninezhad, Anthony M. D. Lee, Alexander Ritchie, Tawimas Shaipanich, Wei Zhang, Diana N. Ionescu, Geoffrey Hohert, Calum MacAulay, Stephen Lam, and Pierre Lane
Biomed. Opt. Express 6(10) 4191-4199 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Swanson and J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited],” Biomed. Opt. Express 8(3), 1638–1664 (2017).
    [Crossref] [PubMed]
  2. M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
    [Crossref] [PubMed]
  3. S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
    [Crossref] [PubMed]
  4. R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
    [Crossref] [PubMed]
  5. L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
    [Crossref] [PubMed]
  6. A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
    [Crossref] [PubMed]
  7. L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
    [Crossref] [PubMed]
  8. J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
    [Crossref] [PubMed]
  9. Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
    [Crossref] [PubMed]
  10. J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
    [Crossref] [PubMed]
  11. D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
    [Crossref]
  12. D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
    [Crossref] [PubMed]
  13. A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
    [Crossref] [PubMed]
  14. H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
    [Crossref] [PubMed]
  15. H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E. L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
    [Crossref] [PubMed]
  16. L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
    [Crossref] [PubMed]
  17. J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, and J. F. de Boer, “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23(3), 3390–3402 (2015).
    [Crossref] [PubMed]
  18. L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
    [Crossref] [PubMed]
  19. P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
    [Crossref] [PubMed]
  20. C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
    [Crossref] [PubMed]
  21. G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
    [Crossref] [PubMed]
  22. A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
    [Crossref] [PubMed]
  23. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
    [Crossref] [PubMed]
  24. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref] [PubMed]
  25. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
    [Crossref] [PubMed]
  26. N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
    [Crossref] [PubMed]
  27. S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
    [Crossref] [PubMed]
  28. V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
    [Crossref]
  29. E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express 21(1), 1163–1180 (2013).
    [Crossref] [PubMed]
  30. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref] [PubMed]
  31. M. G. O. Graefe, J. A. Van de Kreeke, J. Willemse, Y. de Jong, H. S. Tan, F. Verbraak, and J. F. de Boer, “Subretinal Fibrosis Detection using Polarization Sensitive Optical Coherence Tomography,” In preparation (2019).
  32. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
    [Crossref] [PubMed]
  33. R. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4× 4 matrix calculus,” JOSA 68(12), 1756–1767 (1978).
    [Crossref]
  34. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
    [Crossref] [PubMed]
  35. J. Willemse, M. G. O. Graefe, J. A. van de Kreeke, F. Feroldi, F. Verbraak, and J. F. de Boer, “Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer,” In preparation (2019).
  36. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
    [Crossref] [PubMed]
  37. Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
    [Crossref] [PubMed]
  38. M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
    [Crossref]
  39. C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
    [Crossref] [PubMed]
  40. O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
    [Crossref] [PubMed]
  41. T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
    [Crossref] [PubMed]
  42. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
    [Crossref] [PubMed]
  43. B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
    [Crossref] [PubMed]
  44. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
    [Crossref] [PubMed]
  45. M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
    [Crossref] [PubMed]
  46. S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
    [Crossref] [PubMed]
  47. S. Stefan, K.-S. Jeong, C. Polucha, N. Tapinos, S. A. Toms, and J. Lee, “Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient,” Biomed. Opt. Express 9(10), 5084–5099 (2018).
    [Crossref] [PubMed]
  48. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref] [PubMed]
  49. H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, “Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature,” Biomed. Opt. Express 6(10), 4191–4199 (2015).
    [Crossref] [PubMed]
  50. F. Feroldi, M. Verlaan, H. Knaus, V. Davidoiu, D. J. Vugts, G. A. M. S. van Dongen, C. F. M. Molthoff, and J. F. de Boer, “High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model,” Biomed. Opt. Express 9(12), 6186–6204 (2018).
    [Crossref] [PubMed]

2018 (6)

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
[Crossref] [PubMed]

S. Stefan, K.-S. Jeong, C. Polucha, N. Tapinos, S. A. Toms, and J. Lee, “Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient,” Biomed. Opt. Express 9(10), 5084–5099 (2018).
[Crossref] [PubMed]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref] [PubMed]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
[Crossref]

F. Feroldi, M. Verlaan, H. Knaus, V. Davidoiu, D. J. Vugts, G. A. M. S. van Dongen, C. F. M. Molthoff, and J. F. de Boer, “High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model,” Biomed. Opt. Express 9(12), 6186–6204 (2018).
[Crossref] [PubMed]

2017 (4)

E. A. Swanson and J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited],” Biomed. Opt. Express 8(3), 1638–1664 (2017).
[Crossref] [PubMed]

L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

2016 (5)

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
[Crossref]

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E. L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
[Crossref] [PubMed]

2015 (6)

J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, and J. F. de Boer, “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23(3), 3390–3402 (2015).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, “Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature,” Biomed. Opt. Express 6(10), 4191–4199 (2015).
[Crossref] [PubMed]

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

2014 (7)

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
[Crossref] [PubMed]

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (4)

2011 (1)

2010 (3)

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
[Crossref] [PubMed]

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

2008 (1)

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

2006 (1)

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

2005 (1)

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

2004 (3)

P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
[Crossref] [PubMed]

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
[Crossref] [PubMed]

1978 (1)

R. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4× 4 matrix calculus,” JOSA 68(12), 1756–1767 (1978).
[Crossref]

Adams, D. C.

D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
[Crossref]

Ahlers, C.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Ahsen, O. O.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

Almasian, M.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Annema, J. T.

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

Applegate, M. B.

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Armstrong, J. J.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Azzam, R.

R. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4× 4 matrix calculus,” JOSA 68(12), 1756–1767 (1978).
[Crossref]

Baldwin, C.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Batchinsky, A.

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Baumann, B.

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Beaudoin, E. L.

Belenkiy, S.

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Biggs, M. J.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Bonta, P. I.

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

Bosschaart, N.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Boudoux, C.

Bouma, B. E.

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express 21(1), 1163–1180 (2013).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Braaf, B.

Brenner, M.

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Cable, A. E.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Cairncross, A.

Cense, B.

Chen, L.

Chen, Y.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Chen, Z.

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Cheng, K. H. Y.

Choi, W.

Chou, L.

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Courtney, B.

Cox, G.

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

Cox, P. G.

P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
[Crossref] [PubMed]

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

d’Hooghe, J. N.

L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
[Crossref] [PubMed]

d’Hooghe, J. N. S.

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

Danek, C. J.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Daniels, J. M. A.

Davidoiu, V.

F. Feroldi, M. Verlaan, H. Knaus, V. Davidoiu, D. J. Vugts, G. A. M. S. van Dongen, C. F. M. Molthoff, and J. F. de Boer, “High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model,” Biomed. Opt. Express 9(12), 6186–6204 (2018).
[Crossref] [PubMed]

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

de Boer, J. F.

F. Feroldi, M. Verlaan, H. Knaus, V. Davidoiu, D. J. Vugts, G. A. M. S. van Dongen, C. F. M. Molthoff, and J. F. de Boer, “High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model,” Biomed. Opt. Express 9(12), 6186–6204 (2018).
[Crossref] [PubMed]

J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, and J. F. de Boer, “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23(3), 3390–3402 (2015).
[Crossref] [PubMed]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
[Crossref] [PubMed]

de Bruin, D. M.

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

de Groot, M.

de Lange, J.

Dijkstra, J.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Ding, M.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Duan, L.

Duker, J. S.

Dungworth, D. L.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Eastwood, P. R.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Eggermont, J.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Faber, D. J.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Feroldi, F.

Figueiredo, M.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Fitzgerald, J. M.

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

Fujimoto, J. G.

Fukuda, S.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Fung, K.-M.

R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
[Crossref] [PubMed]

Gazdar, A.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Giacomelli, M. G.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

Goorsenberg, A. W. M.

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

Götzinger, E.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Grünberg, K.

Gu, Y. Y.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Guan, W. J.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Hadjilucas, L.

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

Hariri, L. P.

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
[Crossref]

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Hayashi, A.

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Hillman, D. R.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Hitzenberger, C. K.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Hogg, J. C.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Hohert, G.

Honda, H.

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Hong, Y.-J.

Huang, D.

Huang, Q.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Ichinose, S.

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Ijichi, T.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Ikeda, N.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Ionescu, D. N.

Ishii, K.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

James, A.

Jayaraman, V.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Jeong, K.-S.

Jiang, J. H.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Jiang, M.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Jing, J.

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Jing, J. C.

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

Ju, M. J.

Karnowski, K.

Kato, H.

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Kato, Y.

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Keast, T. M.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Keddissi, J. I.

R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
[Crossref] [PubMed]

Kinasewitz, G. T.

R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
[Crossref] [PubMed]

King, A. J.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Knaus, H.

Kurokawa, K.

Lam, S.

H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E. L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, “Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature,” Biomed. Opt. Express 6(10), 4191–4199 (2015).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
[Crossref] [PubMed]

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

Lane, P.

Lane, P. M.

H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
[Crossref] [PubMed]

Lanuti, M.

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

Lee, A. M. D.

H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E. L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, “Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature,” Biomed. Opt. Express 6(10), 4191–4199 (2015).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
[Crossref] [PubMed]

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

Lee, H. C.

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Lee, J.

S. Stefan, K.-S. Jeong, C. Polucha, N. Tapinos, S. A. Toms, and J. Lee, “Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient,” Biomed. Opt. Express 9(10), 5084–5099 (2018).
[Crossref] [PubMed]

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

Lee, K. K. C.

Leff, A. R.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
[Crossref] [PubMed]

Leigh, M. S.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Lelieveldt, B. P. F.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Lemij, H. G.

leRiche, J.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Li, J.

Li, Q.

Li, S. Y.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Liang, K.

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Lim, Y.

Lippok, N.

Liu, S.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Lombard, C. M.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Loomas, B. E.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Lucey, A. D.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Luo, W. Z.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

MacAulay, C.

H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E. L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, “Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature,” Biomed. Opt. Express 6(10), 4191–4199 (2015).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
[Crossref] [PubMed]

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Makita, S.

Mariampillai, A.

Mark, E. J.

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Marotta, T. R.

Mashimo, H.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

McLaughlin, R. A.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

McWilliams, A.

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

Michel, R. G.

R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
[Crossref] [PubMed]

Miller, A. J.

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

Miller, J.

P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
[Crossref] [PubMed]

Miller, J. D.

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Mino-Kenudson, M.

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Mitzner, W.

P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
[Crossref] [PubMed]

Miura, M.

Mo, J.

Molthoff, C. F. M.

Nadkarni, S. K.

Nakazawa, G.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Noble, P. B.

Nolte, F.

Oh, W. Y.

Oh, W.-Y.

Ohtani, K.

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

Onuma, Y.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Oshika, T.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Otsuka, K.

Paduch, A.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Pahlevaninezhad, H.

Park, B. H.

Pierce, M. C.

Pircher, M.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Polucha, C.

Potsaid, B.

Potsaid, B. M.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Ramalingam, T.

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

Ritchie, A.

Roelofs, J. J. T. H.

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

Sampson, D. D.

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Sattmann, H.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Schlanitz, F.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Schneider, J. E.

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

Schuutze, C.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Serruys, P. W.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Shaipanich, T.

Sicam, V. A.

Smith, N. P.

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

Sotomi, Y.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Standish, B.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Standish, B. A.

Stefan, S.

Su, E.

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

Sun, C.

Suter, M. J.

D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
[Crossref]

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Swanson, E. A.

Tang, S.

Tao, Y. K.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

Tapinos, N.

Teh, I.

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

Tetlow, G. A.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Toms, S. A.

Torii, S.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

Tsai, T. H.

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

O. O. Ahsen, H. C. Lee, M. G. Giacomelli, Z. Wang, K. Liang, T. H. Tsai, B. Potsaid, H. Mashimo, and J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Opt. Lett. 39(20), 5973–5976 (2014).
[Crossref] [PubMed]

Tsuboi, M.

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Vakoc, B. J.

van den Berk, I. A. H.

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

van Dongen, G. A. M. S.

van Leeuwen, T. G.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Verlaan, M.

Vermeer, K. A.

Vienola, K. V.

Villiger, M.

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
[Crossref]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

Villiger, M. L.

Vitkin, A. I.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Vugts, D. J.

Vuong, B.

Walsh, J. H.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Wang, J.

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

Wang, W.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Wang, Y.

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
[Crossref]

Wang, Z.

Weda, J. J. A.

Wijmans, L.

L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
[Crossref] [PubMed]

Wizeman, W. J.

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

Wong, B. J. F.

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

Yamanari, M.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Yang, V.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Yang, V. X. D.

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

Yasuno, Y.

Zhang, E. Z.

Zhang, W.

Zhong, C. H.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Zhong, N. S.

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Am. J. Respir. Crit. Care Med. (2)

L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, and M. J. Suter, “Seeing beyond the Bronchoscope to Increase the Diagnostic Yield of Bronchoscopic Biopsy,” Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013).
[Crossref] [PubMed]

G. Cox, J. D. Miller, A. McWilliams, J. M. Fitzgerald, and S. Lam, “Bronchial thermoplasty for asthma,” Am. J. Respir. Crit. Care Med. 173(9), 965–969 (2006).
[Crossref] [PubMed]

Ann. Am. Thorac. Soc. (1)

L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing Lung Carcinomas with Optical Coherence Tomography,” Ann. Am. Thorac. Soc. 12(2), 193–201 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (8)

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, “Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature,” Biomed. Opt. Express 6(10), 4191–4199 (2015).
[Crossref] [PubMed]

E. A. Swanson and J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited],” Biomed. Opt. Express 8(3), 1638–1664 (2017).
[Crossref] [PubMed]

S. Stefan, K.-S. Jeong, C. Polucha, N. Tapinos, S. A. Toms, and J. Lee, “Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient,” Biomed. Opt. Express 9(10), 5084–5099 (2018).
[Crossref] [PubMed]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref] [PubMed]

F. Feroldi, M. Verlaan, H. Knaus, V. Davidoiu, D. J. Vugts, G. A. M. S. van Dongen, C. F. M. Molthoff, and J. F. de Boer, “High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model,” Biomed. Opt. Express 9(12), 6186–6204 (2018).
[Crossref] [PubMed]

Biomed. Phys. Eng. Express (1)

V. Davidoiu, L. Hadjilucas, I. Teh, N. P. Smith, J. E. Schneider, and J. Lee, “Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT,” Biomed. Phys. Eng. Express 2(4), 045015 (2016).
[Crossref]

Chest (1)

R. G. Michel, G. T. Kinasewitz, K.-M. Fung, and J. I. Keddissi, “Optical Coherence Tomography as an Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer,” Chest 138(4), 984–988 (2010).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Curr. Opin. Pulm. Med. (1)

L. Wijmans, J. N. d’Hooghe, P. I. Bonta, and J. T. Annema, “Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Curr. Opin. Pulm. Med. 23(3), 275–283 (2017).
[Crossref] [PubMed]

Eur. Respir. J. (1)

P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” Eur. Respir. J. 24(4), 659–663 (2004).
[Crossref] [PubMed]

Gastroenterology (1)

T. H. Tsai, O. O. Ahsen, H. C. Lee, K. Liang, M. Figueiredo, Y. K. Tao, M. G. Giacomelli, B. M. Potsaid, V. Jayaraman, Q. Huang, A. E. Cable, J. G. Fujimoto, and H. Mashimo, “Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature,” Gastroenterology 147(6), 1219–1221 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 12 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

A. D. Lucey, A. J. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Trans. Biomed. Eng. 57(10), 2535–2548 (2010).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

C. J. Danek, C. M. Lombard, D. L. Dungworth, P. G. Cox, J. D. Miller, M. J. Biggs, T. M. Keast, B. E. Loomas, W. J. Wizeman, J. C. Hogg, and A. R. Leff, “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J. Appl. Physiol. 97(5), 1946–1953 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

A. M. D. Lee, K. Ohtani, C. Macaulay, A. McWilliams, T. Shaipanich, V. X. D. Yang, S. Lam, and P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography,” J. Biomed. Opt. 18(5), 50501 (2013).
[Crossref] [PubMed]

H. Pahlevaninezhad, A. M. D. Lee, S. Lam, C. MacAulay, and P. M. Lane, “Coregistered autofluorescence-optical coherence tomography imaging of human lung sections,” J. Biomed. Opt. 19(3), 036022 (2014).
[Crossref] [PubMed]

L. Chou, A. Batchinsky, S. Belenkiy, J. Jing, T. Ramalingam, M. Brenner, and Z. Chen, “In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography,” J. Biomed. Opt. 19(3), 036018 (2014).
[Crossref] [PubMed]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. F. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22(9), 1–16 (2017).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

JOSA (1)

R. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4× 4 matrix calculus,” JOSA 68(12), 1756–1767 (1978).
[Crossref]

Lung Cancer (1)

M. Tsuboi, A. Hayashi, N. Ikeda, H. Honda, Y. Kato, S. Ichinose, and H. Kato, “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 49(3), 387–394 (2005).
[Crossref] [PubMed]

Opt. Express (8)

B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
[Crossref] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref] [PubMed]

E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express 21(1), 1163–1180 (2013).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref] [PubMed]

D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
[Crossref] [PubMed]

J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, and J. F. de Boer, “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23(3), 3390–3402 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

PLoS One (2)

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PLoS One 12(10), e0184145 (2017).
[Crossref] [PubMed]

Respir. Med. (1)

Y. Chen, M. Ding, W. J. Guan, W. Wang, W. Z. Luo, C. H. Zhong, M. Jiang, J. H. Jiang, Y. Y. Gu, S. Y. Li, and N. S. Zhong, “Validation of human small airway measurements using endobronchial optical coherence tomography,” Respir. Med. 109(11), 1446–1453 (2015).
[Crossref] [PubMed]

Respiration (1)

A. W. M. Goorsenberg, J. N. S. d’Hooghe, D. M. de Bruin, I. A. H. van den Berk, J. T. Annema, and P. I. Bonta, “Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma,” Respiration 96(6), 564–570 (2018).
[Crossref] [PubMed]

Sci. Rep. (2)

J. C. Jing, L. Chou, E. Su, B. J. F. Wong, and Z. Chen, “Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor,” Sci. Rep. 6(1), 39443 (2016).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Other (2)

M. G. O. Graefe, J. A. Van de Kreeke, J. Willemse, Y. de Jong, H. S. Tan, F. Verbraak, and J. F. de Boer, “Subretinal Fibrosis Detection using Polarization Sensitive Optical Coherence Tomography,” In preparation (2019).

J. Willemse, M. G. O. Graefe, J. A. van de Kreeke, F. Feroldi, F. Verbraak, and J. F. de Boer, “Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer,” In preparation (2019).

Supplementary Material (2)

NameDescription
» Visualization 1       Sequence of B-scans corresponding to figures 6 and 7.
» Visualization 2       Sequence of B-scans corresponding to figures 8 and 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of the PS-OCT imaging system, motorized OCT catheter, and custom micromotor. a) Light from a swept source laser is sampled by a fiber Bragg grating (FBG) to provide an A-line trigger. The light is split into the two arms of a Mach-Zehnder interferometer made of a reference arm with a transmission delay line and a sample arm containing a PDU that introduces a delay between P and S polarization states. A circulator (C) redirects the light to the catheter, inserted in the lungs through the working channel of a standard bronchoscope. Light from the sample arm interferes with the reference arm light in a monolithic polarization diversity detection module (PDDM), which separates the light into orthogonal polarization components (P and S) on separate balanced detectors. PCs are polarization controllers. b) A schematic of the OCT endoscope, a Peek tubing holds the single-mode fiber glued to the GRIN lens in place. The focused light is directed to the tissue by a 48° angled prism mounted on the axle of a micromotor. The rotation of the motor creates a circumferential scan that allows reconstructing an OCT B-scan. S and N represent the magnetic poles of the magnet placed at the core of the AC motor. c) cross-section of the custom micromotor. Two electrical wires are double-wound around the housing of the motor, which contains a free-to-rotate magnet with an axle held in place by two conical bearings. d) photo of the endoscope tip. e) zoom-in of the catheter tip. The copper wire double-wound on the motor is visible.
Fig. 2
Fig. 2 Demonstration of the segmentation algorithm on OCT cross-sections shown in polar coordinates. a) Manual selection of the window for the first frame of the volume. The top boundary is chosen by visual inspection of the DOPU image of the first frame (cyan rectangle). b) The area is isolated with a binary mask, and the inner sheath surface is segmented with a graph-based shortest path algorithm. c) Segmentation of the inner sheath surface. The motor wires are detected from the integral of the DOPU image between the top edge of the image and the inner sheath surface (blue line). d) A binary mask was obtained by selecting the pixels comprised between 5 and 35 pixels below the inner sheath and applied to the intensity image. e) Segmentation of the outer sheath. f) The area above the segmented outer sheath and behind the wires is ignored and the segmentation algorithm to find the lung surface is applied. g-i) Examples of segmentation of OCT B-scans taken from different locations along the volume. The solid orange rectangle and the dashed cyan rectangle in c and f show areas associated with alveoli and submucosa, respectively.
Fig. 3
Fig. 3 Schematic of the PMD compensation algorithm. The boxes in green represent operations in the wavenumber domain, while the boxes in blue operations in depth-domain. The orange boxes represent Fast Fourier Transforms (FFT).
Fig. 4
Fig. 4 An example of histology of a human bronchus compared with cross sections acquired in vivo with our OCT catheter. a) H&E staining of an airway cross section. b) Desmin staining of an airway cross section. c) OCT intensity image acquired in vivo from a bronchiole of a severe asthma patient (not the same patient from which the histological slides were obtained). d) AC image of the same cross-section. In all images, the arrows indicate the main histological features of the airway: epithelium (Ep.), basement membrane (BM), lamina propria (LP), airway smooth muscle (ASM), and cartilage (Cart.). The scale bar in the histological images is 500 µm. The distance between the dotted green markers in the OCT images is 200 µm in tissue.
Fig. 5
Fig. 5 Comparison of OCT intensity images and AC images extracted with the depth-resolved AC method. In all figures, the green circles represent the inner and outer edge of the plastic catheter sheath. The white area on the right half of the images masks the area of tissue not optically accessible due to the presence of the copper wires feeding current to the motor, obtained from the segmentation algorithm. The thin white lines are A-lines excluded due to saturation of the photodetectors. a,c) OCT intensity image of a frame along the in vivo pullback in a patient with chronic asthma. b,d) AC image of the same cross-section. The red arrows in a) indicate artifacts that are partially obscuring a piece of cartilages, corrected by the AC calculation in b). The light blue arrows in c) and d) point at areas where epithelial folds are present but only visible in the AC images. The greyscale is [0 −55] dB for the OCT intensity images in a) and c), and [10-1.8 102.7] mm−1 for the AC images in b) and d). The distance between the dotted green markers is 200 µm in tissue.
Fig. 6
Fig. 6 Example of a cross section from a distal location along the in vivo pullback in RB8. a) Intensity OCT B-scan. b) Corresponding AC image. c) Birefringence-induced local phase retardation image of the same frame. In red the DOCT signal. d) OAxU of the same frame. The black arrows indicate alveoli. The blue arrows point to a superficial birefringent layer, probably associated with the presence of ASM, which is visible in the birefringence images, and more prominently visible in the OAxU images. In all images, the orange arrows indicate a blood vessel. The green circles represent the edges of the plastic catheter sheath, as found by the segmentation algorithm. The white area on the top left side of the images masks the area of tissue not optically accessible due to the presence of the copper wires feeding current to the motor, while the thin white lines are A-lines excluded due to saturation of the photodetectors. The intensity images have a greyscale dynamic range of 55 dB, the AC images are shown on a logarithmic scale of [10-1.8 102.7] mm−1, the birefringence images are shown between [0 4.0]°/µm, the greyscale range of OAxU images is [0 1], while the DOCT signal is shown as a binary image above a threshold of 0.63 rad. The distance between the dotted green markers is 200 µm in tissue.
Fig. 7
Fig. 7 Example of a cross section from a proximal location along the in vivo pullback in RB8. a) Intensity OCT B-scan. b) Corresponding AC image. c) Birefringence-induced phase retardation image of the same frame. In red the DOCT signal. d) OAxU of the same frame. The red arrows point at two large pieces of cartilage, with their perichondrium appearing as a ring-like structure. The blue arrows point to a birefringent layer, probably associated with the presence of ASM, which is visible in the birefringence images, and more prominently visible in the OAxU images. In all images, the orange arrows indicate blood vessels, while the green circles represent the edges of the plastic catheter sheath, as found by the segmentation algorithm. The white area on the top left side of the images masks the area of tissue not optically accessible due to the presence of the copper wires feeding current to the motor. The intensity images have a greyscale dynamic range of 55 dB, the AC images are shown on a logarithmic scale of [10-1.8 102.7] mm−1, the birefringence images are shown between [0 4.0]°/µm, the greyscale range of OAxU images is [0 1], while the DOCT signal is shown as a binary image above a threshold of 0.63 rad. The distance between the dotted green markers is 200 µm in tissue.
Fig. 8
Fig. 8 Example of a cross section from a distal location along the in vivo pullback in RB9. a) Intensity OCT B-scan. b) Corresponding AC image. c) Birefringence-induced phase retardation image of the same frame. In red the DOCT signal. d) OAxU of the same frame. The solid red arrows point at a piece of cartilage. The blue arrows indicate ASM, while the dashed green arrows a superficial birefringent structure of unknown origin. In this frame, no blood flow was detected by our phase-resolved algorithm. In all images, the green circles represent the edges of the plastic catheter sheath, as found by the segmentation algorithm. The white area on the right side of the images masks the area of tissue not optically accessible due to the presence of the copper wires feeding current to the motor. The intensity images have a greyscale dynamic range of 55 dB, the AC images are shown on a logarithmic scale of [10-1.8 102.7] mm−1, the birefringence images are shown between [0 4]°/µm, the greyscale of OAxU images is [0 1], while the DOCT signal is shown as a binary image above a threshold of 0.63 rad. The distance between the dotted green markers is 200 µm in tissue.
Fig. 9
Fig. 9 Example of a cross section from a proximal location along the in vivo pullback in RB9. a) Intensity OCT B-scan. b) Corresponding AC image. c) Birefringence-induced phase retardation image of the same frame. In red the DOCT signal. d) OAxU of the same frame. The red arrows indicate two pieces of cartilage, while the blue arrows ASM. The dashed green lines highlight the presence of a shallow birefringent layer of uncertain origin. A blood vessel is visible in the top left quadrant of the image. In all images, the green circles represent the edges of the plastic catheter sheath, as found by the segmentation algorithm. The white area on the right side of the images masks the area of tissue not optically accessible due to the presence of the copper wires feeding current to the motor. The intensity images have a greyscale dynamic range of 55 dB, the AC images are shown on a logarithmic scale of [10-1.8 102.7] mm−1, the birefringence images are shown between [0 4]°/µm, the greyscale of OAxU images is [0 1], while the DOCT signal is shown as a binary image above a threshold of 0.63 rad. The distance between the dotted green markers is 200 µm in tissue.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

DOPU= Q I 2 + U I 2 + V I 2 ,
E out (k)= J out (k) J m -1 J sh -1 (k)J ' S (k) J sh (k) J m J in (k) E in (k),
E surf (k)= J out (k) J m 1 J sh 1 (k)[ 1 0 0 1 ] J sh (k) J m J in (k) E in (k).
E surf 1 (k) E out (k)= E in 1 (k) J in 1 (k) J m 1 J sh 1 (k) J S (k) J sh (k) J m J in (k) E in (k),
M=JM(z+Δz)JM (z) 1 .
m=logm(M) M det(M) 4 I,
Γ=[ η ν μ ]= 1 2 [ m 34 m 43 m 24 m 42 m 23 m 32 ],
OAxU= η γ 2 + ν γ 2 + μ γ 2 ,
θ ρ =arg( z ( E z,ρ E z,ρ1 * ) ).
Δ φ z,ρ =arg( kernel( E z,ρ E z,ρ1 * e i θ ρ ) ).
μ i I i 2Δz i+1 I i