Abstract

An analytical model is presented that qualitatively describes the cooling of a biological tissue after irradiation with short and ultrashort laser pulses. The assumption that the distribution of temperature at the initial moment of surface cooling repeats the distribution of the absorbed laser energy allowed us to use the thermal conductivity approximation in both cases. The experimental results of irradiation of dry bone with nanosecond and femtosecond laser pulses are compared with the calculated data. The necessity of taking into account the change in the optical parameters of hard tissue in the field of laser irradiation during its treatment by nanosecond and femtosecond laser pulses and the key role of residual heating in its carbonization around the exposure region is shown. The application of the model to a particular biological tissue can significantly simplify the search for optimal parameters of lasers for surgical procedures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heat accumulation during pulsed laser materials processing

Rudolf Weber, Thomas Graf, Peter Berger, Volkher Onuseit, Margit Wiedenmann, Christian Freitag, and Anne Feuer
Opt. Express 22(9) 11312-11324 (2014)

Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon

Lauren L. Taylor, Ryan E. Scott, and Jie Qiao
Opt. Mater. Express 8(3) 648-658 (2018)

Heat accumulation in ultra-short pulsed scanning laser ablation of metals

Franziska Bauer, Andreas Michalowski, Thomas Kiedrowski, and Stefan Nolte
Opt. Express 23(2) 1035-1043 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Choi and S. H. Yun, “In vivo femtosecond endosurgery: an intestinal epithelial regeneration-after-injury model,” Opt. Express 21(25), 30842–30848 (2013).
    [Crossref] [PubMed]
  2. H. Deppe and H. H. Horch, “Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22(4), 217–221 (2007).
    [Crossref] [PubMed]
  3. D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
    [Crossref] [PubMed]
  4. Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
    [Crossref] [PubMed]
  5. H. Jelinkova, Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Woodhead Publishing Limited, 2013).
  6. Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
    [Crossref] [PubMed]
  7. K. Nouri, Lasers in Dermatology and Medicine (Springer, 2018).
  8. R. E. Fitzpatrick and J. R. Lupton, “Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo,” Lasers Surg. Med. 27(4), 358–361 (2000).
    [Crossref] [PubMed]
  9. K. Sardana, R. Ranjan, and S. Ghunawat, “Optimising laser tattoo removal,” J. Cutan. Aesthet. Surg. 8(1), 16–24 (2015).
    [Crossref] [PubMed]
  10. S. Barua, “Laser-tissue interaction in tattoo removal by Q-switched lasers,” J. Cutan. Aesthet. Surg. 8(1), 5–8 (2015).
    [Crossref] [PubMed]
  11. M. Domke, J. Gratt, and R. Sroka, “Fabriaction of homogeneously emitting optical fiber diffusors using fs-laser ablation,” In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE 9740, 97400O (2016).
    [Crossref]
  12. E.N. Sobol, Phase Transformations and Ablation in Laser-treated Solids (John Wiley & Sons, Inc.1995).
  13. K. Kulikov and T. Koshlan, Laser Interaction with Heterogeneous Biological Tissue: Mathematical Modeling (Springer, 2018).
  14. D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol. 22(1), 24–33 (2012).
    [Crossref] [PubMed]
  15. J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
    [Crossref]
  16. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  17. R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
    [Crossref]
  18. R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
    [Crossref] [PubMed]
  19. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Dejstvie izlucheniya bol'shoj moshchnosti na metally (Effect of High Power Radiation on Metals) (Nauka, 1970).
  20. N.B. Delone, “Multiphoton processes,” Sorosovskij obrazovatel'nyj zhurnal (Sorovsky Educational Journal) (3), 75–81 (1996).
  21. E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4–5), 91–243 (2011).
    [Crossref]
  22. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron – hole plasmas in silicon,” Phys. Rev. 61(4), 2643–2650 (2000).
    [Crossref]
  23. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int,” J. Heat Mass Transf. 48(3–4), 501–509 (2005).
  24. N. Medvedev and B. Rethfeld, “A comprehensive model for the ultrashort visible light irradiation of semiconductors,” J. Appl. Phys. 108(10), 103112 (2010).
    [Crossref]
  25. T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref] [PubMed]
  26. D. S. Polyakov and E. B. Yakovlev, “Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 μm,” Appl. Phys., A Mater. Sci. Process. 124(12), 803 (2018).
    [Crossref]
  27. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
    [Crossref] [PubMed]
  28. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  29. I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
    [Crossref]
  30. A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
    [Crossref]
  31. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  32. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  33. C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
    [Crossref] [PubMed]
  34. K. C. Kao, Dielectric Phenomena in Solids (Elsevier, 2004).
  35. K. Franjic, M. L. Cowan, D. Kraemer, and R. J. Miller, “Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations,” Opt. Express 17(25), 22937–22959 (2009).
    [Crossref] [PubMed]
  36. S. Kumar, Organic Chemistry: Spectroscopy of Organic Compounds (Guru Nanak Dev University, 2006).
  37. V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE Press, 2016).
  38. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
    [Crossref]
  39. V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
    [Crossref]
  40. J. Lundskog, “Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury,” Scand. J. Plast. Reconstr. Surg. 9, 1–80 (1972).
    [PubMed]
  41. W. R. Krause, “Orthogonal bone cutting: saw design and operating characteristics,” J. Biomech. Eng. 109(3), 263–271 (1987).
    [Crossref] [PubMed]
  42. E. S. Zelenov, “Experimental investigation of the thermophysical properties of compact bone,” Mech. Compos. Mater. 21(6), 759–762 (1986).
    [Crossref]
  43. A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
    [Crossref] [PubMed]
  44. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer Science & Business Media, 2013).
  45. H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53(12), 3381–3390 (2008).
    [Crossref] [PubMed]
  46. S. Elanchezhiyan, R. Renukadevi, and K. Vennila, “Comparison of diode laser-assisted surgery and conventional surgery in the management of hereditary ankyloglossia in siblings: a case report with scientific review,” Lasers Med. Sci. 28(1), 7–12 (2013).
    [Crossref] [PubMed]
  47. S. P. A. Parker, Laser-Tissue Interaction. In Lasers in Dentistry – Current Concepts (Springer, 2017).
  48. M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
    [Crossref]
  49. R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
    [Crossref] [PubMed]

2018 (3)

D. S. Polyakov and E. B. Yakovlev, “Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 μm,” Appl. Phys., A Mater. Sci. Process. 124(12), 803 (2018).
[Crossref]

A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
[Crossref]

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
[Crossref] [PubMed]

2016 (2)

M. Domke, J. Gratt, and R. Sroka, “Fabriaction of homogeneously emitting optical fiber diffusors using fs-laser ablation,” In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE 9740, 97400O (2016).
[Crossref]

R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
[Crossref] [PubMed]

2015 (4)

K. Sardana, R. Ranjan, and S. Ghunawat, “Optimising laser tattoo removal,” J. Cutan. Aesthet. Surg. 8(1), 16–24 (2015).
[Crossref] [PubMed]

S. Barua, “Laser-tissue interaction in tattoo removal by Q-switched lasers,” J. Cutan. Aesthet. Surg. 8(1), 5–8 (2015).
[Crossref] [PubMed]

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

2014 (2)

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

2013 (4)

M. Choi and S. H. Yun, “In vivo femtosecond endosurgery: an intestinal epithelial regeneration-after-injury model,” Opt. Express 21(25), 30842–30848 (2013).
[Crossref] [PubMed]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Elanchezhiyan, R. Renukadevi, and K. Vennila, “Comparison of diode laser-assisted surgery and conventional surgery in the management of hereditary ankyloglossia in siblings: a case report with scientific review,” Lasers Med. Sci. 28(1), 7–12 (2013).
[Crossref] [PubMed]

R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
[Crossref] [PubMed]

2012 (4)

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol. 22(1), 24–33 (2012).
[Crossref] [PubMed]

2011 (2)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4–5), 91–243 (2011).
[Crossref]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
[Crossref] [PubMed]

2010 (1)

N. Medvedev and B. Rethfeld, “A comprehensive model for the ultrashort visible light irradiation of semiconductors,” J. Appl. Phys. 108(10), 103112 (2010).
[Crossref]

2009 (1)

2008 (1)

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53(12), 3381–3390 (2008).
[Crossref] [PubMed]

2007 (1)

H. Deppe and H. H. Horch, “Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22(4), 217–221 (2007).
[Crossref] [PubMed]

2006 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
[Crossref]

2005 (3)

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int,” J. Heat Mass Transf. 48(3–4), 501–509 (2005).

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

2002 (1)

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

2000 (2)

R. E. Fitzpatrick and J. R. Lupton, “Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo,” Lasers Surg. Med. 27(4), 358–361 (2000).
[Crossref] [PubMed]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron – hole plasmas in silicon,” Phys. Rev. 61(4), 2643–2650 (2000).
[Crossref]

1999 (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

1993 (1)

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

1987 (1)

W. R. Krause, “Orthogonal bone cutting: saw design and operating characteristics,” J. Biomech. Eng. 109(3), 263–271 (1987).
[Crossref] [PubMed]

1986 (1)

E. S. Zelenov, “Experimental investigation of the thermophysical properties of compact bone,” Mech. Compos. Mater. 21(6), 759–762 (1986).
[Crossref]

1972 (1)

J. Lundskog, “Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury,” Scand. J. Plast. Reconstr. Surg. 9, 1–80 (1972).
[PubMed]

Acosta, J. A. L.

R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
[Crossref] [PubMed]

Altermatt, H. J.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Anic, I.

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Arai, A.

Arnold, W. H.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Bago, I.

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Barua, S.

S. Barua, “Laser-tissue interaction in tattoo removal by Q-switched lasers,” J. Cutan. Aesthet. Surg. 8(1), 5–8 (2015).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
[Crossref]

Bauer, T.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Belikov, A. V.

A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
[Crossref]

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int,” J. Heat Mass Transf. 48(3–4), 501–509 (2005).

Bonse, J.

Bourauel, C.

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

Bovatsek, J.

Castillo, R. F.

R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
[Crossref] [PubMed]

Chen, J. K.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int,” J. Heat Mass Transf. 48(3–4), 501–509 (2005).

Choi, M.

Cowan, M. L.

Cvecek, K.

de Arce, V. J.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

de la Fuente, G. A. C.

R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
[Crossref] [PubMed]

Deppe, H.

H. Deppe and H. H. Horch, “Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22(4), 217–221 (2007).
[Crossref] [PubMed]

Derrien, T. J.-Y.

Dille, C.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Domke, M.

M. Domke, J. Gratt, and R. Sroka, “Fabriaction of homogeneously emitting optical fiber diffusors using fs-laser ablation,” In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE 9740, 97400O (2016).
[Crossref]

Eaton, S.

Elanchezhiyan, S.

S. Elanchezhiyan, R. Renukadevi, and K. Vennila, “Comparison of diode laser-assisted surgery and conventional surgery in the management of hereditary ankyloglossia in siblings: a case report with scientific review,” Lasers Med. Sci. 28(1), 7–12 (2013).
[Crossref] [PubMed]

Fallnich, C.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Feldmann, A.

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
[Crossref] [PubMed]

Fitzpatrick, R. E.

R. E. Fitzpatrick and J. R. Lupton, “Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo,” Lasers Surg. Med. 27(4), 358–361 (2000).
[Crossref] [PubMed]

Forrer, M.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Franjic, K.

Frentzen, M.

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

Frenz, M.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Gabric Panduric, D.

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4–5), 91–243 (2011).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
[Crossref]

Ghunawat, S.

K. Sardana, R. Ranjan, and S. Ghunawat, “Optimising laser tattoo removal,” J. Cutan. Aesthet. Surg. 8(1), 16–24 (2015).
[Crossref] [PubMed]

Gill, R. K.

R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
[Crossref] [PubMed]

Gratt, J.

M. Domke, J. Gratt, and R. Sroka, “Fabriaction of homogeneously emitting optical fiber diffusors using fs-laser ablation,” In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE 9740, 97400O (2016).
[Crossref]

Guk, I.

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Gupta, A.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

Hamblin, M. R.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

Herman, P.

Höhm, S.

Horch, H. H.

H. Deppe and H. H. Horch, “Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22(4), 217–221 (2007).
[Crossref] [PubMed]

Huang, S. F.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

Huang, Y. Y.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Ishise, H.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Itina, T. E.

Jeong, D. C.

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol. 22(1), 24–33 (2012).
[Crossref] [PubMed]

Kaifosh, P.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Kakibuchi, M.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Kang, H. W.

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53(12), 3381–3390 (2008).
[Crossref] [PubMed]

Kasenbacher, A.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Katanec, D.

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Kawai, K.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Kleinfeld, D.

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol. 22(1), 24–33 (2012).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
[Crossref]

Konov, V. I.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Kraemer, D.

Krause, W. R.

W. R. Krause, “Orthogonal bone cutting: saw design and operating characteristics,” J. Biomech. Eng. 109(3), 263–271 (1987).
[Crossref] [PubMed]

Krüger, J.

Lee, C.

R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
[Crossref] [PubMed]

Lilge, L.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Lundskog, J.

J. Lundskog, “Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury,” Scand. J. Plast. Reconstr. Surg. 9, 1–80 (1972).
[PubMed]

Lupton, J. R.

R. E. Fitzpatrick and J. R. Lupton, “Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo,” Lasers Surg. Med. 27(4), 358–361 (2000).
[Crossref] [PubMed]

Maquer, G.

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
[Crossref] [PubMed]

Marjoribanks, R. S.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

McKinney, L.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Medvedev, N.

N. Medvedev and B. Rethfeld, “A comprehensive model for the ultrashort visible light irradiation of semiconductors,” J. Appl. Phys. 108(10), 103112 (2010).
[Crossref]

Meister, J.

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

Miletic, I.

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Miller, R. J.

Miyamoto, I.

Mordovanakis, A.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Nishimoto, S.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Oh, J.

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53(12), 3381–3390 (2008).
[Crossref] [PubMed]

Okihara, S.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Plötz, C.

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

Polyakov, D. S.

D. S. Polyakov and E. B. Yakovlev, “Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 μm,” Appl. Phys., A Mater. Sci. Process. 124(12), 803 (2018).
[Crossref]

Ranjan, R.

K. Sardana, R. Ranjan, and S. Ghunawat, “Optimising laser tattoo removal,” J. Cutan. Aesthet. Surg. 8(1), 16–24 (2015).
[Crossref] [PubMed]

Renukadevi, R.

S. Elanchezhiyan, R. Renukadevi, and K. Vennila, “Comparison of diode laser-assisted surgery and conventional surgery in the management of hereditary ankyloglossia in siblings: a case report with scientific review,” Lasers Med. Sci. 28(1), 7–12 (2013).
[Crossref] [PubMed]

Rethfeld, B.

N. Medvedev and B. Rethfeld, “A comprehensive model for the ultrashort visible light irradiation of semiconductors,” J. Appl. Phys. 108(10), 103112 (2010).
[Crossref]

Romano, V.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Rosenfeld, A.

Sardana, K.

K. Sardana, R. Ranjan, and S. Ghunawat, “Optimising laser tattoo removal,” J. Cutan. Aesthet. Surg. 8(1), 16–24 (2015).
[Crossref] [PubMed]

Schelle, F.

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

Schmidt, M.

Schoenly, J. E.

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Serbin, J.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Shah, L.

Shakhno, E. A.

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

Shamova, A. A.

A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
[Crossref]

Shandybina, G.

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Shandybina, G. D.

A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
[Crossref]

Shimokita, R.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Silenok, A.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Smith, Z. J.

R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron – hole plasmas in silicon,” Phys. Rev. 61(4), 2643–2650 (2000).
[Crossref]

Sotsuka, Y.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Sroka, R.

M. Domke, J. Gratt, and R. Sroka, “Fabriaction of homogeneously emitting optical fiber diffusors using fs-laser ablation,” In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE 9740, 97400O (2016).
[Crossref]

Tsai, P. S.

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol. 22(1), 24–33 (2012).
[Crossref] [PubMed]

Tsumano, T.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
[Crossref]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int,” J. Heat Mass Transf. 48(3–4), 501–509 (2005).

Ubelaker, D. H.

R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
[Crossref] [PubMed]

Vecchio, D.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

Veiko, V. P.

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

Vennila, K.

S. Elanchezhiyan, R. Renukadevi, and K. Vennila, “Comparison of diode laser-assisted surgery and conventional surgery in the management of hereditary ankyloglossia in siblings: a case report with scientific review,” Lasers Med. Sci. 28(1), 7–12 (2013).
[Crossref] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron – hole plasmas in silicon,” Phys. Rev. 61(4), 2643–2650 (2000).
[Crossref]

Wachsmann-Hogiu, S.

R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
[Crossref] [PubMed]

Weber, H. P.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Welch, A. J.

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53(12), 3381–3390 (2008).
[Crossref] [PubMed]

Wili, P.

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
[Crossref] [PubMed]

Xuan, W.

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

Yakovlev, E.

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Yakovlev, E. B.

A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
[Crossref]

D. S. Polyakov and E. B. Yakovlev, “Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 μm,” Appl. Phys., A Mater. Sci. Process. 124(12), 803 (2018).
[Crossref]

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

Yamauchi, T.

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

Yoshino, F.

Yun, S. H.

Zabkar, J.

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Zelenov, E. S.

E. S. Zelenov, “Experimental investigation of the thermophysical properties of compact bone,” Mech. Compos. Mater. 21(6), 759–762 (1986).
[Crossref]

Zhang, H.

Zysset, P.

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
[Crossref] [PubMed]

Appl. Phys. B (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, and V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56(2), 104–112 (1993).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. S. Polyakov and E. B. Yakovlev, “Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 μm,” Appl. Phys., A Mater. Sci. Process. 124(12), 803 (2018).
[Crossref]

Appl. Surf. Sci. (2)

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol. 22(1), 24–33 (2012).
[Crossref] [PubMed]

Eur. Cell. Mater. (1)

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, “The thermal conductivity of cortical and cancellous bone,” Eur. Cell. Mater. 35, 25–33 (2018).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

R. F. Castillo, D. H. Ubelaker, J. A. L. Acosta, and G. A. C. de la Fuente, “Effects of temperature on bone tissue. Histological study of the changes in the bone matrix,” Forensic Sci. Int. 226(1-3), 33–37 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE (1)

M. Domke, J. Gratt, and R. Sroka, “Fabriaction of homogeneously emitting optical fiber diffusors using fs-laser ablation,” In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Proc. SPIE 9740, 97400O (2016).
[Crossref]

In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” In Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII. Proc. SPIE 6163, 616310 (2006).
[Crossref]

J. Appl. Phys. (1)

N. Medvedev and B. Rethfeld, “A comprehensive model for the ultrashort visible light irradiation of semiconductors,” J. Appl. Phys. 108(10), 103112 (2010).
[Crossref]

J. Biomech. Eng. (1)

W. R. Krause, “Orthogonal bone cutting: saw design and operating characteristics,” J. Biomech. Eng. 109(3), 263–271 (1987).
[Crossref] [PubMed]

J. Biophotonics (2)

R. K. Gill, Z. J. Smith, C. Lee, and S. Wachsmann-Hogiu, “The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study,” J. Biophotonics 9(1-2), 171–180 (2016).
[Crossref] [PubMed]

Y. Y. Huang, A. Gupta, D. Vecchio, V. J. de Arce, S. F. Huang, W. Xuan, and M. R. Hamblin, “Transcranial low level laser (light) therapy for traumatic brain injury,” J. Biophotonics 5(11-12), 827–837 (2012).
[Crossref] [PubMed]

J. Cutan. Aesthet. Surg. (2)

K. Sardana, R. Ranjan, and S. Ghunawat, “Optimising laser tattoo removal,” J. Cutan. Aesthet. Surg. 8(1), 16–24 (2015).
[Crossref] [PubMed]

S. Barua, “Laser-tissue interaction in tattoo removal by Q-switched lasers,” J. Cutan. Aesthet. Surg. 8(1), 5–8 (2015).
[Crossref] [PubMed]

J. Heat Mass Transf. (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int,” J. Heat Mass Transf. 48(3–4), 501–509 (2005).

J. Oral Maxillofac. Surg. (1)

D. Gabrić Pandurić, I. Bago, D. Katanec, J. Zabkar, I. Miletić, and I. Anić, “Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study,” J. Oral Maxillofac. Surg. 70(11), 2515–2521 (2012).
[Crossref] [PubMed]

Lasers Med. Sci. (4)

Y. Sotsuka, S. Nishimoto, T. Tsumano, K. Kawai, H. Ishise, M. Kakibuchi, R. Shimokita, T. Yamauchi, and S. Okihara, “The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser,” Lasers Med. Sci. 29(3), 1125–1129 (2014).
[Crossref] [PubMed]

H. Deppe and H. H. Horch, “Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22(4), 217–221 (2007).
[Crossref] [PubMed]

C. Plötz, F. Schelle, C. Bourauel, M. Frentzen, and J. Meister, “Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system,” Lasers Med. Sci. 30(3), 977–983 (2015).
[Crossref] [PubMed]

S. Elanchezhiyan, R. Renukadevi, and K. Vennila, “Comparison of diode laser-assisted surgery and conventional surgery in the management of hereditary ankyloglossia in siblings: a case report with scientific review,” Lasers Med. Sci. 28(1), 7–12 (2013).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

R. E. Fitzpatrick and J. R. Lupton, “Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo,” Lasers Surg. Med. 27(4), 358–361 (2000).
[Crossref] [PubMed]

Mech. Compos. Mater. (1)

E. S. Zelenov, “Experimental investigation of the thermophysical properties of compact bone,” Mech. Compos. Mater. 21(6), 759–762 (1986).
[Crossref]

Opt. Express (5)

Photonics Lasers Med. (1)

R. S. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. Mordovanakis, P. Kaifosh, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Phys. Med. Biol. (1)

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53(12), 3381–3390 (2008).
[Crossref] [PubMed]

Phys. Rep. (1)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4–5), 91–243 (2011).
[Crossref]

Phys. Rev. (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron – hole plasmas in silicon,” Phys. Rev. 61(4), 2643–2650 (2000).
[Crossref]

Quantum Electron. (2)

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

A. V. Belikov, A. A. Shamova, G. D. Shandybina, and E. B. Yakovlev, “Nano- and femtosecond high-repetition-rate multipulse laser irradiation of dehydrated bone tissue: role of accumulated heat and model of cooling,” Quantum Electron. 48(8), 755–760 (2018).
[Crossref]

Scand. J. Plast. Reconstr. Surg. (1)

J. Lundskog, “Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury,” Scand. J. Plast. Reconstr. Surg. 9, 1–80 (1972).
[PubMed]

Other (11)

S. Kumar, Organic Chemistry: Spectroscopy of Organic Compounds (Guru Nanak Dev University, 2006).

V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE Press, 2016).

K. C. Kao, Dielectric Phenomena in Solids (Elsevier, 2004).

S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Dejstvie izlucheniya bol'shoj moshchnosti na metally (Effect of High Power Radiation on Metals) (Nauka, 1970).

N.B. Delone, “Multiphoton processes,” Sorosovskij obrazovatel'nyj zhurnal (Sorovsky Educational Journal) (3), 75–81 (1996).

E.N. Sobol, Phase Transformations and Ablation in Laser-treated Solids (John Wiley & Sons, Inc.1995).

K. Kulikov and T. Koshlan, Laser Interaction with Heterogeneous Biological Tissue: Mathematical Modeling (Springer, 2018).

H. Jelinkova, Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Woodhead Publishing Limited, 2013).

K. Nouri, Lasers in Dermatology and Medicine (Springer, 2018).

S. P. A. Parker, Laser-Tissue Interaction. In Lasers in Dentistry – Current Concepts (Springer, 2017).

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer Science & Business Media, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the dynamics of surface temperature of biological tissue (relative to the initial temperature) during irradiation with (a) nanosecond and (b) femtosecond laser pulses.
Fig. 2
Fig. 2 Schematic representation of the temperature, accumulated on the surface relative to the initial temperature.
Fig. 3
Fig. 3 Theoretical radial distribution of temperature, accumulated by the dry bone tissue surface (relative to the room temperature), during multipulse nanosecond laser irradiation at constant α and A for 1 kHz (1), 10 kHz (2).
Fig. 4
Fig. 4 (a) Optical microscopy image of bone after multipulse nanosecond laser irradiation at pulse repetition rate of 15 kHz. (b) Theoretical radial distribution of temperature, accumulated by the dry bone tissue surface, for 15 kHz: at constant α and A (1); at variable α and A (2).
Fig. 5
Fig. 5 Experimental and theoretical radial distributions of temperature, accumulated by the dry bone tissue surface (above the room temperature), during multipulse femtosecond laser irradiation at pulse repetition rate of 1 kHz. The solid curve is the result of calculation; the dashed curve is the result of the experiment [18].
Fig. 6
Fig. 6 The averaged accumulated temperature of the dry bone tissue surface (relative to the room temperature) as a function of the pulse repetition rate: solid line is the result of calculation; dashed line is the result of the experiment [18].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T(r,z)= T max exp( r 2 r 0 2 )exp( αz ),
T max = αAE C ,
T(r)= T max exp( r 2 r 0 2 ).
T t =a 2 T r 2 + 1 r T r ,
T(t,r)= T max r 0 2 ( r 0 2 +4at ) exp( r 2 ( r 0 2 +4at ) ).
ΔT( t= N f ,r )= T max i=1 N r 0 2 ( r 0 2 +4ai/f ) exp( r 2 ( r 0 2 +4ai/f ) ) .