Abstract

In the field of biomedicine, there are optical systems that provide the tissue metabolic rate of oxygen consumption (tMRO2) by the simultaneous measurement of blood flow and oxygenation level. However, current optical systems are costly and require complex optical alignments, which are inconvenient for clinical applications. Therefore, in this study, we developed a simple diffuse optical metabolic spectroscopy system by combining a broadband light source and a laser and by sharing a spectrometer as a detector for both diffuse optical spectroscopy and diffuse speckle contrast analysis. This system simultaneously measures blood flow, volume, and oxygenation in a simple and cost-effective manner. The system response to flow is demonstrated through the flow phantom experiments. The results of the experiments show that flow response is in the range 0~0.9 ml/min, with a resolution better than 0.1 ml/min. During the blood phantom study, the blood volume fraction increased linearly with blood accumulation. Further, the change in oxygenation was monitored with the modulation of the oxygen level in the gas supply. Finally, tMRO2 changes were measured during ischemia, induced by the upper arm cuff and the results showed a decrease and a recovery of tMRO2 with cuff inflation and deflation, respectively. This simple diffuse optical metabolic spectroscopic system can easily be applied in medical environments by providing a simple and convenient solution for measuring tMRO2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation

Turgut Durduran, Guoqiang Yu, Mark G. Burnett, John A. Detre, Joel H. Greenberg, Jiongjiong Wang, Chao Zhou, and Arjun G. Yodh
Opt. Lett. 29(15) 1766-1768 (2004)

Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia

Rickson C. Mesquita, Nicolas Skuli, Meeri N. Kim, Jiaming Liang, Steve Schenkel, Amar J. Majmundar, M. Celeste Simon, and Arjun G. Yodh
Biomed. Opt. Express 1(4) 1173-1187 (2010)

Approaches to denoise the diffuse optical signals for tissue blood flow measurement

Peng Zhang, Zhiguo Gui, GuoDong Guo, and Yu Shang
Biomed. Opt. Express 9(12) 6170-6185 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
    [Crossref] [PubMed]
  2. G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
    [Crossref] [PubMed]
  3. R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
    [Crossref] [PubMed]
  4. S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
    [Crossref] [PubMed]
  5. R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
    [Crossref] [PubMed]
  6. E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
    [Crossref] [PubMed]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  8. C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” (The Royal Society, 2011).
  9. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
    [Crossref] [PubMed]
  10. A. S. Golub and R. N. Pittman, “A paradigm shift for local blood flow regulation,” Am. J. Appl. Physiol.. 116(6) 703–705 (2014).
  11. T. W. Secomb, “Theoretical models for regulation of blood flow,” Microcirculation 15(8), 765–775 (2008).
    [Crossref] [PubMed]
  12. R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
    [Crossref] [PubMed]
  13. J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37(19), 4005–4007 (2012).
    [Crossref] [PubMed]
  14. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous Imaging of Cortical Blood Flow and Oxygenation Change or Cellular Calcium Dynamics Using Dual-Wavelength Laser Speckle Contrast Imaging,” in Biomedical Optics, (Optical Society of America, 2010), BWA6.
  15. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
    [Crossref] [PubMed]
  16. M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
    [Crossref] [PubMed]
  17. M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
    [Crossref] [PubMed]
  18. H. Lu, Y. Li, H. Li, L. Yuan, Q. Liu, Y. Sun, and S. Tong, “Single-trial estimation of the cerebral metabolic rate of oxygen with imaging photoplethysmography and laser speckle contrast imaging,” Opt. Lett. 40(7), 1193–1196 (2015).
    [Crossref] [PubMed]
  19. R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
    [Crossref] [PubMed]
  20. T. Nguyen, S. Kim, and J. G. Kim, “Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef,” Food Chem. 275, 369–376 (2019).
    [Crossref] [PubMed]
  21. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  22. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  23. W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
    [Crossref] [PubMed]
  24. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
    [Crossref] [PubMed]
  25. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express 21(19), 22854–22861 (2013).
    [Crossref] [PubMed]
  26. R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
    [Crossref] [PubMed]
  27. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue, (International Society for Optics and Photonics, 2008), 687007.
  28. P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
    [Crossref]
  29. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
    [Crossref] [PubMed]
  30. S. A. Prahl, Tabulated Molar Extinction Coefficient for Hemoglobin in Water” https://omlc.org/spectra/hemoglobin/summary.html
  31. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P 3 approximation,” J. Opt. Soc. Am. A 18(3), 584–599 (2001).
    [Crossref]
  32. R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
    [Crossref] [PubMed]

2019 (1)

T. Nguyen, S. Kim, and J. G. Kim, “Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef,” Food Chem. 275, 369–376 (2019).
[Crossref] [PubMed]

2018 (1)

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

2017 (1)

S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
[Crossref] [PubMed]

2016 (1)

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

2015 (2)

H. Lu, Y. Li, H. Li, L. Yuan, Q. Liu, Y. Sun, and S. Tong, “Single-trial estimation of the cerebral metabolic rate of oxygen with imaging photoplethysmography and laser speckle contrast imaging,” Opt. Lett. 40(7), 1193–1196 (2015).
[Crossref] [PubMed]

E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
[Crossref] [PubMed]

2014 (2)

A. S. Golub and R. N. Pittman, “A paradigm shift for local blood flow regulation,” Am. J. Appl. Physiol.. 116(6) 703–705 (2014).

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (2)

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

2010 (5)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

2008 (1)

T. W. Secomb, “Theoretical models for regulation of blood flow,” Microcirculation 15(8), 765–775 (2008).
[Crossref] [PubMed]

2007 (1)

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

2005 (1)

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

2003 (1)

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

2001 (1)

1999 (1)

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

1997 (1)

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Armitage, G. A.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
[Crossref] [PubMed]

Atkinson, J.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

Aubert, A.

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

Bi, R.

Bittoun, J.

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Brenner, M.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Buckley, E. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Burger, J.

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

Chance, B.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Choe, R.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Choi, B.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Costalat, R.

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

Crelier, G. R.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

de Boer, J. F.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Desjardins, A. E.

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Detre, J. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Dong, J.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Durduran, T.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Durkin, A. J.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Dziennis, S.

Edlow, B. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Evers, D. J.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Foster, T. H.

Frangos, S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Ghijsen, M.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Gill, B.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

Gioux, S.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Golub, A. S.

A. S. Golub and R. N. Pittman, “A paradigm shift for local blood flow regulation,” Am. J. Appl. Physiol.. 116(6) 703–705 (2014).

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Greenberg, J. H.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Hendriks, B. H.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Hillman, E. M.

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

Hoge, R. D.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

Hull, E. L.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jeong, H.

S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
[Crossref] [PubMed]

Kim, E.

E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
[Crossref] [PubMed]

Kim, J. G.

T. Nguyen, S. Kim, and J. G. Kim, “Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef,” Food Chem. 275, 369–376 (2019).
[Crossref] [PubMed]

S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
[Crossref] [PubMed]

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
[Crossref] [PubMed]

Kim, M. N.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Kim, S.

T. Nguyen, S. Kim, and J. G. Kim, “Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef,” Food Chem. 275, 369–376 (2019).
[Crossref] [PubMed]

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Künnemeyer, R.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

Lech, G.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Lee, K.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
[Crossref] [PubMed]

R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express 21(19), 22854–22861 (2013).
[Crossref] [PubMed]

Lee, S.

S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
[Crossref] [PubMed]

E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
[Crossref] [PubMed]

Lentsch, G. R.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Levine, J. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Li, H.

Li, Y.

Liu, Q.

Lu, H.

Lucassen, G. W.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Mai, P. M.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Marrett, S.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

Martinsen, P.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

McGlone, A.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

Mohler, E. R.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Nachabé, R.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

Nelson, J. S.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Nguyen, T.

T. Nguyen, S. Kim, and J. G. Kim, “Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef,” Food Chem. 275, 369–376 (2019).
[Crossref] [PubMed]

Oldenburg, H. S.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Peeters, M.-J. V.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

Phillips, Z.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
[Crossref] [PubMed]

Pike, G. B.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

Pittman, R. N.

A. S. Golub and R. N. Pittman, “A paradigm shift for local blood flow regulation,” Am. J. Appl. Physiol.. 116(6) 703–705 (2014).

Qin, J.

Reif, R.

Rowe, P. I.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

Ruers, T. J.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

Rutgers, E. J.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

Secomb, T. W.

T. W. Secomb, “Theoretical models for regulation of blood flow,” Microcirculation 15(8), 765–775 (2008).
[Crossref] [PubMed]

Seelye, R.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

Seong, M.

S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
[Crossref] [PubMed]

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

Shi, L.

Shuaib, A.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
[Crossref] [PubMed]

Smithies, D. J.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Song, C.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

Sterenborg, H. J.

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Sun, Y.

Talele, S.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

Todd, K. G.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
[Crossref] [PubMed]

Tong, S.

Tromberg, B. J.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Valabrègue, R.

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

Van der Hage, J. A.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

van der Mark, M. B.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

van der Voort, M.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

van Gemert, M. J.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Verkruysse, W.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Wang, R. K.

Wesseling, J.

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Winship, I. R.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
[Crossref] [PubMed]

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Yeo, C.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

Yodh, A. G.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Yu, G.

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Yuan, L.

Zhou, C.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

Am. J. Appl. Physiol.. (1)

A. S. Golub and R. N. Pittman, “A paradigm shift for local blood flow regulation,” Am. J. Appl. Physiol.. 116(6) 703–705 (2014).

Biomed. Opt. Express (2)

BMC Urol. (1)

E. Kim, S. Lee, Z. Phillips, and J. G. Kim, “A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy,” BMC Urol. 15(1), 11 (2015).
[Crossref] [PubMed]

Food Chem. (1)

T. Nguyen, S. Kim, and J. G. Kim, “Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef,” Food Chem. 275, 369–376 (2019).
[Crossref] [PubMed]

J. Biomed. Opt. (9)

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 27001 (2016).
[Crossref] [PubMed]

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
[Crossref] [PubMed]

R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M.-J. V. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[Crossref] [PubMed]

S. Lee, H. Jeong, M. Seong, and J. G. Kim, “Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy,” J. Biomed. Opt. 22(12), 121603 (2017).
[Crossref] [PubMed]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab. 30(8), 1432–1436 (2010).
[Crossref] [PubMed]

R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat, “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange,” J. Cereb. Blood Flow Metab. 23(5), 536–545 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Magn. Reson. Med. (1)

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model,” Magn. Reson. Med. 42(5), 849–863 (1999).
[Crossref] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Microcirculation (1)

T. W. Secomb, “Theoretical models for regulation of blood flow,” Microcirculation 15(8), 765–775 (2008).
[Crossref] [PubMed]

Neurocrit. Care (1)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[Crossref] [PubMed]

Postharvest Biol. Technol. (1)

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Seelye, “Relationship between tissue firmness and optical properties of ‘Royal Gala’apples from 400 to 1050 nm,” Postharvest Biol. Technol. 94, 89–96 (2014).
[Crossref]

Other (4)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue, (International Society for Optics and Photonics, 2008), 687007.

S. A. Prahl, Tabulated Molar Extinction Coefficient for Hemoglobin in Water” https://omlc.org/spectra/hemoglobin/summary.html

Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous Imaging of Cortical Blood Flow and Oxygenation Change or Cellular Calcium Dynamics Using Dual-Wavelength Laser Speckle Contrast Imaging,” in Biomedical Optics, (Optical Society of America, 2010), BWA6.

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” (The Royal Society, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 DOS and DSCA combined system.
Fig. 2
Fig. 2 A schematic drawing of flow phantom. The outer and inner tube diameter are 7 mm and 3 mm, respectively and the tube was placed 5 mm below from the surface.
Fig. 3
Fig. 3 (a) the changes of 1/Kt2 during the flow phantom experiments. The dot and error bar represent the average and the standard deviation of sixty points of 1/Kt2, respectively. (b) the increase of blood volume fraction (v) during the blood phantom experiments. The column and error bar represents the average and the standard deviation of sixty points of v. The red line is the result of linear regression.
Fig. 4
Fig. 4 The results from blood phantom experiment, (a) blood volume fraction changes of oxy, deoxy and total hemoglobin and (b) blood oxygenation changes during three phases of supplied gas. *, ** and *** represent first, second and third phase.
Fig. 5
Fig. 5 The representative result from arm occlusion test. (a) The oxygenation and 1/Kt2 changes during the experiments, and (b) the calculated tMRO2 based on oxygenation and 1/Kt2 changes.
Fig. 6
Fig. 6 Oxygenation changes during the blood phantom experiments (bottom layer) and recovered absorption coefficients spectrum at the interval of 5, 26, 73 and 120 minutes later when oxygenation was 98%, 52%, 0.1%, and 98%, respectively (top layer).
Fig. 7
Fig. 7 (a) The fitting results and residual on the first spectrum of subject 1, (b) Oxyhemoglobin and deoxyhemoglobin extinction coefficients spectrum by Scott Prahl [30], the black line represents an isosbestic point.

Tables (1)

Tables Icon

Table 1 The changes in tMRO2 from four subjects during the arm occlusion test. (mean ± standard deviation)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R[ μ a , μ s ' ,ρ]= μ s ' 4π( μ s ' + μ a ) ×[ z 0 ( μ eff + 1 r 1 ) exp(- μ eff r 1 ) r 1 2 +( z 0 +2 z b )( μ eff + 1 r 2 ) exp(- μ eff r 2 ) r 2 2 ]
μ a (λ)=C(λ)×v×( St O 2 ε oxy (λ)+( 1-St O 2 ) ε deoxy (λ) )
μ s ' (λ)=α[ γ MR ( λ λ 0 ) -b +(1- γ MR ) ( λ λ 0 ) -4 ]
K t = σ t <I>
1+rtMR O 2 =( 1+rBF )( 1-St O 2 (t) 1-St O 2 (0) )
DR(λ)= I S (λ) I R (λ)

Metrics