Abstract

Atrial fibrillation (Afib) can lead to life threatening conditions such as heart failure and stroke. During Afib treatment, clinicians aim to repress unusual electrical activity by electrically isolating the pulmonary veins (PV) from the left atrium (LA) using radiofrequency ablation. However, current clinical tools are limited in reliably assessing transmurality of the ablation lesions and detecting the presence of gaps within ablation lines, which can warrant repeat procedures. In this study, we developed an endoscopic multispectral reflectance imaging (eMSI) system for enhanced discrimination of tissue treatment at the PV junction. The system enables direct visualization of cardiac lesions through an endoscope at acquisition rates up to 25 Hz. Five narrowband, high-power LEDs were used to illuminate the sample (450, 530, 625, 810 and 940nm) and combinatory parameters were calculated based on their relative reflectance. A stitching algorithm was employed to generate large field-of-view, multispectral mosaics of the ablated PV junction from individual eMSI images. A total of 79 lesions from 15 swine hearts were imaged, ex vivo. Statistical analysis of the acquired five spectral data sets and ratiometric maps revealed significant differences between transmural lesions, non-transmural lesions around the venoatrial junctions, unablated posterior wall of left atrium tissue, and pulmonary vein (p < 0.0001). A pixel-based quadratic discriminant analysis classifier was applied to distinguish four tissue types: PV, untreated LA, non-transmural and transmural lesions. We demonstrate tissue type classification accuracies of 80.2% and 92.1% for non-transmural and transmural lesions, and 95.0% and 92.8% for PV and untreated LA sites, respectively. These findings showcase the potential of eMSI for lesion validation and may help to improve AFib treatment efficacy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mapping the human pulmonary venoatrial junction with optical coherence tomography

Theresa H. Lye, Vivek Iyer, Charles C. Marboe, and Christine P. Hendon
Biomed. Opt. Express 10(2) 434-448 (2019)

Real time assessment of RF cardiac tissue ablation with optical spectroscopy

Stavros G. Demos and Shiva Sharareh
Opt. Express 16(19) 15286-15296 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
    [Crossref] [PubMed]
  2. P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke 22(8), 983–988 (1991).
    [Crossref] [PubMed]
  3. E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
    [Crossref] [PubMed]
  4. “Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials,” Arch. Intern. Med.154(13), 1449–1457 (1994).
    [Crossref] [PubMed]
  5. A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
    [Crossref] [PubMed]
  6. P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
    [Crossref] [PubMed]
  7. E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
    [Crossref] [PubMed]
  8. N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
    [PubMed]
  9. M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
    [Crossref] [PubMed]
  10. A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
    [Crossref] [PubMed]
  11. V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
    [Crossref] [PubMed]
  12. E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
    [Crossref] [PubMed]
  13. M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
    [Crossref] [PubMed]
  14. A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
    [Crossref] [PubMed]
  15. A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
    [Crossref] [PubMed]
  16. M. A. Wood, “Exposing gaps in linear radiofrequency lesions: form before function,” Circ Arrhythm Electrophysiol 4(3), 257–259 (2011).
    [Crossref] [PubMed]
  17. C. P. Fleming, K. J. Quan, H. Wang, G. Amit, and A. M. Rollins, “In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography,” Opt. Express 18(3), 3079–3092 (2010).
    [Crossref] [PubMed]
  18. X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
    [Crossref] [PubMed]
  19. X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
    [Crossref] [PubMed]
  20. Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
    [Crossref] [PubMed]
  21. C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).
  22. D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
    [Crossref] [PubMed]
  23. N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
    [Crossref] [PubMed]
  24. L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
    [Crossref] [PubMed]
  25. M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
    [Crossref] [PubMed]
  26. H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
    [Crossref] [PubMed]
  27. R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
    [Crossref] [PubMed]
  28. S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
    [Crossref] [PubMed]
  29. G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
    [Crossref] [PubMed]
  30. M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
    [Crossref] [PubMed]
  31. S. G. Demos and S. Sharareh, “Real time assessment of RF cardiac tissue ablation with optical spectroscopy,” Opt. Express 16(19), 15286–15296 (2008).
    [Crossref] [PubMed]
  32. R. P. Singh-Moon, C. C. Marboe, and C. P. Hendon, “Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation,” Biomed. Opt. Express 6(7), 2494–2511 (2015).
    [Crossref] [PubMed]
  33. R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
    [PubMed]
  34. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  35. W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
    [PubMed]
  36. J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
    [Crossref] [PubMed]
  37. R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
    [Crossref] [PubMed]
  38. A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
    [Crossref] [PubMed]
  39. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
    [Crossref] [PubMed]
  40. H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
    [Crossref] [PubMed]
  41. S. Iskander-Rizk, P. Kruizinga, A. F. W. van der Steen, and G. van Soest, “Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium,” Biomed. Opt. Express 9(3), 1309–1322 (2018).
    [Crossref] [PubMed]
  42. S. Thomsen, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” Proc. Soc. Photo-Opt 1202, 2–10 (1990).
  43. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
    [Crossref] [PubMed]
  44. J. de Vries, “Barrel and pincushion lens distortion correction,” MATLAB Central File Exchange (2012).
  45. Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
    [Crossref] [PubMed]
  46. T. H. Lye, V. Iyer, C. C. Marboe, and C. P. Hendon, “Mapping the human pulmonary venoatrial junction with optical coherence tomography,” Biomed. Opt. Express 10(2), 434–448 (2019).
    [Crossref] [PubMed]
  47. S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
    [Crossref] [PubMed]
  48. S. Nath, J. P. DiMarco, and D. E. Haines, “Basic aspects of radiofrequency catheter ablation,” J. Cardiovasc. Electrophysiol. 5(10), 863–876 (1994).
    [Crossref] [PubMed]
  49. R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
    [Crossref] [PubMed]
  50. S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
    [Crossref] [PubMed]

2019 (1)

2018 (5)

S. Iskander-Rizk, P. Kruizinga, A. F. W. van der Steen, and G. van Soest, “Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium,” Biomed. Opt. Express 9(3), 1309–1322 (2018).
[Crossref] [PubMed]

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

2017 (1)

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

2016 (2)

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

2015 (4)

R. P. Singh-Moon, C. C. Marboe, and C. P. Hendon, “Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation,” Biomed. Opt. Express 6(7), 2494–2511 (2015).
[Crossref] [PubMed]

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

2014 (2)

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
[Crossref] [PubMed]

2013 (2)

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (2)

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

2011 (7)

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

M. A. Wood, “Exposing gaps in linear radiofrequency lesions: form before function,” Circ Arrhythm Electrophysiol 4(3), 257–259 (2011).
[Crossref] [PubMed]

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

S. G. Demos and S. Sharareh, “Real time assessment of RF cardiac tissue ablation with optical spectroscopy,” Opt. Express 16(19), 15286–15296 (2008).
[Crossref] [PubMed]

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

2006 (2)

M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
[Crossref] [PubMed]

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

2004 (1)

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

2003 (1)

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

2002 (1)

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

2001 (1)

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

1999 (2)

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

1998 (2)

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
[Crossref] [PubMed]

1997 (1)

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

1996 (1)

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

1995 (1)

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

1994 (1)

S. Nath, J. P. DiMarco, and D. E. Haines, “Basic aspects of radiofrequency catheter ablation,” J. Cardiovasc. Electrophysiol. 5(10), 863–876 (1994).
[Crossref] [PubMed]

1991 (2)

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke 22(8), 983–988 (1991).
[Crossref] [PubMed]

1990 (1)

S. Thomsen, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” Proc. Soc. Photo-Opt 1202, 2–10 (1990).

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

1949 (1)

W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
[PubMed]

Aalders, M. C.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

Abbott, R. D.

P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke 22(8), 983–988 (1991).
[Crossref] [PubMed]

Ahmed, H.

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

Akoum, N. W.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Al-Ahmad, A.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Albenque, J. P.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Amir, S. B.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Amit, G.

Andersson-Engels, S.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
[Crossref] [PubMed]

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

Anter, E.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Antz, M.

M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
[Crossref] [PubMed]

Armstrong, K.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

Arruda, M. M.

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

Artyomenko, S.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Aryana, A.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Asfour, H.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Ashikaga, H.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Bahnson, T. D.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Baranova, V.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Barkagan, M.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Barley, M.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Barold, S. S.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Barry, J.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Benjamin, E. J.

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

Berger, R. D.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Betts, T. R.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Blackshear, J. L.

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

Blauer, J. J.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Bluemke, D. A.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Bowen, W. J.

W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
[PubMed]

Bremmer, R. H.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

Brooks, A. G.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Calkins, H.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Capuano, L.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Cartier, C.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Celik, H.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Chahbazian, T.

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Chang, Y.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Chen, J.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Chuang, C. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Chun, K. R.

M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
[Crossref] [PubMed]

Clarke, J.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Clémenty, J.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Contreras-Valdes, F. M.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Corbucci, G.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Crystal, E.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Cuoco, F.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

D’Agostino, R. B.

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

Daccarett, M.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Deisenhofer, I.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Deladi, S.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Demos, S. G.

Dick, A. J.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Dickfeld, T. L.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

DiMarco, J. P.

S. Nath, J. P. DiMarco, and D. E. Haines, “Basic aspects of radiofrequency catheter ablation,” J. Cardiovasc. Electrophysiol. 5(10), 863–876 (1994).
[Crossref] [PubMed]

Doblado, M.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Dukkipati, S. R.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Estes, N. A.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Everett, T. H.

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

Fallon, J.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Farr, N.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Feinberg, W. M.

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

Fischer, G.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Fleming, C. P.

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

C. P. Fleming, K. J. Quan, H. Wang, G. Amit, and A. M. Rollins, “In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography,” Opt. Express 18(3), 3079–3092 (2010).
[Crossref] [PubMed]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Fokkenrood, S.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Fu, X.

Gan, Y.

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Ganesan, A. N.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Garan, A.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Garrigue, S.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Gazelle, G. S.

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Ghate, S.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Ghugre, N.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Gil, D. A.

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

Gloschat, C.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Go, A. S.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Goldberg, S. N.

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Govari, A.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Gu, Y.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Guttman, M. A.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Haines, D. E.

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

S. Nath, J. P. DiMarco, and D. E. Haines, “Basic aspects of radiofrequency catheter ablation,” J. Cardiovasc. Electrophysiol. 5(10), 863–876 (1994).
[Crossref] [PubMed]

Haïssaguerre, M.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Halperin, H. R.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Halpern, E. F.

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Harks, E.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Hart, R. G.

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

Haverkamp, W.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Henault, L. E.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Hendon, C. P.

T. H. Lye, V. Iyer, C. C. Marboe, and C. P. Hendon, “Mapping the human pulmonary venoatrial junction with optical coherence tomography,” Biomed. Opt. Express 10(2), 434–448 (2019).
[Crossref] [PubMed]

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

R. P. Singh-Moon, C. C. Marboe, and C. P. Hendon, “Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation,” Biomed. Opt. Express 6(7), 2494–2511 (2015).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Hocini, M.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Holtan, D.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Homoud, M. K.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Houghtaling, C.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Hylek, E. M.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Iskander-Rizk, S.

Issa, Z. F.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Iyer, V.

T. H. Lye, V. Iyer, C. C. Marboe, and C. P. Hendon, “Mapping the human pulmonary venoatrial junction with optical coherence tomography,” Biomed. Opt. Express 10(2), 434–448 (2019).
[Crossref] [PubMed]

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jaïs, P.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Jamali, M.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Jenkins, M. W.

Jiang, C. Y.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Kannel, W. B.

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke 22(8), 983–988 (1991).
[Crossref] [PubMed]

Karaskov, A.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Kato, R.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Kay, M.

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Keane, D.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Kholmovski, E. G.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Kolandaivelu, A.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Kralovec, S.

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

Kronmal, R.

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

Kruizinga, P.

Kuck, K. H.

M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
[Crossref] [PubMed]

Kuklik, P.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Kutinsky, I.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Lakkireddy, D.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Lardo, A. C.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Larson, C.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

Lau, D. H.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Laupacis, A.

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

Lavergne, T.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Le Métayer, P.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Leber, V.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Lederman, R. J.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Leshem, E.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Levy, D.

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

Li, H.

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

Lim, H. S.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Ling, Y.

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

Link, M. S.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Littmann, L.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Liu, D. L.

Lucassen, G. W.

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

Lye, T. H.

Macaya, C.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Macle, L.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Macleod, R. S.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Mangrum, J. M.

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

Mantovan, R.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Marboe, C.

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

Marboe, C. C.

T. H. Lye, V. Iyer, C. C. Marboe, and C. P. Hendon, “Mapping the human pulmonary venoatrial junction with optical coherence tomography,” Biomed. Opt. Express 10(2), 434–448 (2019).
[Crossref] [PubMed]

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

R. P. Singh-Moon, C. C. Marboe, and C. P. Hendon, “Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation,” Biomed. Opt. Express 6(7), 2494–2511 (2015).
[Crossref] [PubMed]

Marrouche, N. F.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Mazhari, R.

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

McGann, C. J.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

McIntyre, J.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

McRury, I. D.

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

McVeigh, E. R.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Meininger, G. R.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Menardi, E.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Mercader, M.

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Mercader, M. A.

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Mihalik, T.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Mitchell, M. A.

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

Mittal, S.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Moreno, J.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Morillo, C. A.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Mueller, P. R.

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Muselimyan, N.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Myers, K. M.

Nadort, A.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

Nardi, S.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Natale, A.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Nath, S.

S. Nath, J. P. DiMarco, and D. E. Haines, “Basic aspects of radiofrequency catheter ablation,” J. Cardiovasc. Electrophysiol. 5(10), 863–876 (1994).
[Crossref] [PubMed]

Nazarian, S.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Neuzil, P.

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

Nilsson, A. M.

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
[Crossref] [PubMed]

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

Novak, P.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Oduneye, S.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Olsson, S. B.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

Ouyang, F.

M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
[Crossref] [PubMed]

Pålsson, S.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Payne, G.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Pérez-Castellano, N.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Peters, D. C.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Petru, J.

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

Phillips, K. A.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Platonov, P.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

Pokushalov, E.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Quan, K. J.

Raman, V. K.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Ramanan, V.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Reddy, V. Y.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Rittman, W. J.

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Roberts-Thomson, K. C.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Roguin, A.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Rollins, A. M.

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
[Crossref] [PubMed]

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

C. P. Fleming, K. J. Quan, H. Wang, G. Amit, and A. M. Rollins, “In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography,” Opt. Express 18(3), 3079–3092 (2010).
[Crossref] [PubMed]

Romanov, A.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Rosenthal, D. I.

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Rosenthal, N.

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

Ruiz, E.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Ruskin, J. N.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Sacher, F.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Salinas, J.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Sanders, P.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Sarvazyan, N.

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Sarvazyan, N. A.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Sediva, L.

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

Selby, J. V.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Shah, D. C.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Sharareh, S.

Shipp, N. J.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Shirokova, N.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Shurrab, M.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Silbershatz, H.

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

Singer, D. E.

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Singh-Moon, R. P.

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

R. P. Singh-Moon, C. C. Marboe, and C. P. Hendon, “Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation,” Biomed. Opt. Express 6(7), 2494–2511 (2015).
[Crossref] [PubMed]

Sinofsky, E.

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Skoda, J.

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

Song, C.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Sood, S.

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Sorger, J. M.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Splinter, R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Stainsby, J. A.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Steinberg, J. S.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

Sturesson, C.

Suijver, F.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Sullivan, T.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Susil, R. C.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Svenson, R. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Swartling, J.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

Swift, L.

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Swift, L. M.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Takahashi, A.

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Tatsis, G. P.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Thompson, M.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Thompson, R. B.

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

Thomsen, S.

S. Thomsen, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” Proc. Soc. Photo-Opt 1202, 2–10 (1990).

Tsay, D.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Tschabrunn, C. M.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Tuntelder, J. R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Turov, A.

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

van der Steen, A. F. W.

van Dusschoten, A.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

van Gemert, M. J.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

van Leeuwen, T. G.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

van Soest, G.

Vega, M.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Vergara, G. R.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Verkruysse, W.

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

Verma, A.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Vij, K.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Vijayakumar, S.

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

Villacastín, J.

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

Vink, J. Y.

Wang, H.

Wang, P. J.

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

Wang, Y. T.

Wang, Z.

Wapner, R. J.

Weerasooriya, R.

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Whang, W.

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Wolf, P. A.

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke 22(8), 983–988 (1991).
[Crossref] [PubMed]

Wood, M. A.

M. A. Wood, “Exposing gaps in linear radiofrequency lesions: form before function,” Circ Arrhythm Electrophysiol 4(3), 257–259 (2011).
[Crossref] [PubMed]

Woollett, I.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Wright, G. A.

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Wright, M.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Yao, W.

Yao, X.

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

Zilberman, I.

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

Zuo, F.

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

Zviman, M. M.

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

Acad. Radiol. (1)

S. N. Goldberg, G. S. Gazelle, E. F. Halpern, W. J. Rittman, P. R. Mueller, and D. I. Rosenthal, “Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size,” Acad. Radiol. 3(3), 212–218 (1996).
[Crossref] [PubMed]

Am. J. Cardiol. (1)

P. Jaïs, D. C. Shah, M. Haïssaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Métayer, and J. Clémenty, “Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation,” Am. J. Cardiol. 84(9), 139R–146R (1999).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Intern. Med. (1)

W. M. Feinberg, J. L. Blackshear, A. Laupacis, R. Kronmal, and R. G. Hart, “Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications,” Arch. Intern. Med. 155(5), 469–473 (1995).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Circ Arrhythm Electrophysiol (2)

M. A. Wood, “Exposing gaps in linear radiofrequency lesions: form before function,” Circ Arrhythm Electrophysiol 4(3), 257–259 (2011).
[Crossref] [PubMed]

H. Celik, V. Ramanan, J. Barry, S. Ghate, V. Leber, S. Oduneye, Y. Gu, M. Jamali, N. Ghugre, J. A. Stainsby, M. Shurrab, E. Crystal, and G. A. Wright, “Intrinsic contrast for characterization of acute radiofrequency ablation lesions,” Circ Arrhythm Electrophysiol 7(4), 718–727 (2014).
[Crossref] [PubMed]

Circulation (3)

R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M. Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, “Catheter-based endomyocardial injection with real-time magnetic resonance imaging,” Circulation 105(11), 1282–1284 (2002).
[Crossref] [PubMed]

S. Nazarian, A. Kolandaivelu, M. M. Zviman, G. R. Meininger, R. Kato, R. C. Susil, A. Roguin, T. L. Dickfeld, H. Ashikaga, H. Calkins, R. D. Berger, D. A. Bluemke, A. C. Lardo, and H. R. Halperin, “Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies,” Circulation 118(3), 223–229 (2008).
[Crossref] [PubMed]

E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy, “Impact of atrial fibrillation on the risk of death: the Framingham Heart Study,” Circulation 98(10), 946–952 (1998).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206(1-3), 166–171 (2011).
[Crossref] [PubMed]

Heart Rhythm (4)

G. R. Vergara, S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche, “Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla,” Heart Rhythm 8(2), 295–303 (2011).
[Crossref] [PubMed]

M. Wright, E. Harks, S. Deladi, F. Suijver, M. Barley, A. van Dusschoten, S. Fokkenrood, F. Zuo, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter,” Heart Rhythm 8(2), 304–312 (2011).
[Crossref] [PubMed]

H. Ahmed, P. Neuzil, J. Skoda, J. Petru, L. Sediva, S. Kralovec, and V. Y. Reddy, “Initial clinical experience with a novel visualization and virtual electrode radiofrequency ablation catheter to treat atrial flutter,” Heart Rhythm 8(3), 361–367 (2011).
[Crossref] [PubMed]

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Heart Rhythm 15(4), 564–575 (2018).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Innovations in Cardiac Rhythm Management (1)

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electrostructuralsubstrate-guided ablation”,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

J. Am. Coll. Cardiol. (2)

E. Pokushalov, A. Romanov, G. Corbucci, S. Artyomenko, V. Baranova, A. Turov, N. Shirokova, A. Karaskov, S. Mittal, and J. S. Steinberg, “A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension,” J. Am. Coll. Cardiol. 60(13), 1163–1170 (2012).
[Crossref] [PubMed]

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, V. Y. Reddy, and HeartLight Study Investigators, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

J. Am. Heart Assoc. (1)

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

J. Biol. Chem. (1)

W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
[PubMed]

J. Biomed. Opt. (1)

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

J. Biophotonics (3)

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

R. P. Singh-Moon, X. Yao, V. Iyer, C. Marboe, W. Whang, and C. P. Hendon, “Real-time optical spectroscopic monitoring of non-irrigated lesion progression within atrial and ventricular tissues,” J. Biophotonics 12, 201800144 (2018).
[PubMed]

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” J. Biophotonics 11(4), e201700204 (2018).
[Crossref] [PubMed]

J. Cardiovasc. Electrophysiol. (4)

S. Nath, J. P. DiMarco, and D. E. Haines, “Basic aspects of radiofrequency catheter ablation,” J. Cardiovasc. Electrophysiol. 5(10), 863–876 (1994).
[Crossref] [PubMed]

M. A. Mitchell, I. D. McRury, T. H. Everett, H. Li, J. M. Mangrum, and D. E. Haines, “Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation,” J. Cardiovasc. Electrophysiol. 10(3), 378–386 (1999).
[Crossref] [PubMed]

N. Pérez-Castellano, J. Villacastín, J. Salinas, M. Vega, J. Moreno, M. Doblado, E. Ruiz, and C. Macaya, “Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation,” J. Cardiovasc. Electrophysiol. 22(2), 149–159 (2011).
[PubMed]

M. Antz, K. R. Chun, F. Ouyang, and K. H. Kuck, “Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO,” J. Cardiovasc. Electrophysiol. 17(11), 1242–1245 (2006).
[Crossref] [PubMed]

J. Interv. Card. Electrophysiol. (1)

A. Garan, A. Al-Ahmad, T. Mihalik, C. Cartier, L. Capuano, D. Holtan, C. Song, M. K. Homoud, M. S. Link, N. A. Estes, and P. J. Wang, “Cryoablation of the pulmonary veins using a novel balloon catheter,” J. Interv. Card. Electrophysiol. 15(2), 79–81 (2006).
[Crossref] [PubMed]

JACC Clin. Electrophysiol. (1)

E. Leshem, I. Zilberman, C. M. Tschabrunn, M. Barkagan, F. M. Contreras-Valdes, A. Govari, and E. Anter, “High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization,” JACC Clin. Electrophysiol. 4(4), 467–479 (2018).
[Crossref] [PubMed]

JAMA (1)

A. S. Go, E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer, “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study,” JAMA 285(18), 2370–2375 (2001).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

A. Verma, C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, P. Sanders, and STAR AF II Investigators, “Approaches to catheter ablation for persistent atrial fibrillation,” N. Engl. J. Med. 372(19), 1812–1822 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Pacing Clin. Electrophysiol. (1)

V. Y. Reddy, C. Houghtaling, J. Fallon, G. Fischer, N. Farr, J. Clarke, J. McIntyre, E. Sinofsky, J. N. Ruskin, and D. Keane, “Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model,” Pacing Clin. Electrophysiol. 27(1), 52–57 (2004).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65(2), 366–373 (1997).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

PLoS One (1)

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Proc. Soc. Photo-Opt (1)

S. Thomsen, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” Proc. Soc. Photo-Opt 1202, 2–10 (1990).

Stroke (1)

P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke 22(8), 983–988 (1991).
[Crossref] [PubMed]

Other (2)

“Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials,” Arch. Intern. Med.154(13), 1449–1457 (1994).
[Crossref] [PubMed]

J. de Vries, “Barrel and pincushion lens distortion correction,” MATLAB Central File Exchange (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Dominant cardiac chromophores used to approximate a single absorption coefficient spectrum. All chromophores were found in published literature. Oxyhemoglobin ( Hb O 2 ) a,  b&c ; deoxyhemoglobin ( Hb ) a,  b&c ; oxymyoglobin   ( Mb O 2 ) a,  b&c ; metmyoglobin   ( MMb ) a,  b&c ; water   ( H 2 O ) a ; hemichrome ( HC ) d and lipi d b . . a obtained from [34]; . b obtained from [35]; . c obtained from [36].; . d obtained from [37].
Fig. 2
Fig. 2 A schematic diagram of endoscopic multispectral imaging system. The system is optically enclosed to block light interference during the experiment. A) shows reference data set of spectrally flat reflectance surface. B) displays raw data of ablated tissue with three lesions taken with the system. Two lesions are shown with light concentrated on the center but are hard to locate exactly all three lesions. In C), normalized image of swine left atrial tissue with three lesions is shown. D) shows distortion corrected image. Since it is difficult to see the correction, a sample grid is shown in E) and F). Image magnification decreases with distance from the center.
Fig. 3
Fig. 3 Experiment procedure and sample preparation flow chart is shown. In A), Fresh swine hearts are retrieved and placed on ice prior to experiment. The pulmonary veins were dissected free from the rest of the heart B) shows experimental setup used for creating lesions using commercial radio-frequency ablation system under phosphate buffered saline. C) displays lesions with gaps created along the pulmonary vein. Image data set acquired from endoscopic multispectral imaging system. Tissue samples are submerged under warm PBS and laid flat as possible. One data set includes images from five specific wavelength channels: 450 nm, 550nm, 625 nm, 810 nm, and 940 nm. D) represents gross pathology of lesion cross-section stained in TTC vital stain and shows Masson’s Trichrome stating of transmural lesion. Dash line highlights the areas of tissue necrosis.
Fig. 4
Fig. 4 Flow chart of main data processing procedure. Images are first calibrated using reference data set and are corrected for barrel distortion and saturation. Images are stitched to create one full data set for each LA sample. Images are manually segmented for each tissue types using RGB image. Classifier is tested and validated using leave-one-out cross validation (LOOCV).
Fig. 5
Fig. 5 Aberration corrected and stitched swine LA tissue sample. A) shows RGB composite image of swine sample with 2 ablated lesions: 1 transmural and 1 non-transmural lesions. B) and C) channel illuminates pulmonary vein and thick endocardium. Lesion contours show high reflectance, but the cores are heavily absorbent. D) shows contrast between the lesion core and the periphery but does not show significant contrast in PV. E) and F) channels reflect less around PV and lesions do not show cores. A full data set includes all five spectral data.
Fig. 6
Fig. 6 Statistical analysis of five wavelength-specific data. Mean relative reflectance values of each segmented normal tissue, pulmonary vein, transmural, and non-transmural lesions were analyzed using ANOVA with Turkey’s multiple comparison test. The number of samples for all tissue types are as follows: 64 transmural, 15 non-transmural lesions, 48 pulmonary vein, 61 normal regions. Boxes represent mean and standard deviations and whiskers indicate the range for each reflectance channel. ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001)
Fig. 7
Fig. 7 Statistical analysis of LOI 1 and LOI 2 is shown at the top. Two pairs show the most significant pairs out of all ratiometric parameters. Boxes represent mean and standard deviations and whiskers indicate the range for each reflectance channel. ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). The ratiometric maps of LOI 1 and LOI 2 are presented at the bottom.
Fig. 8
Fig. 8 Reconstructed classified image with probability distributions from each tissue type. (A-F) shows an example set with lesion line formed along the PV. A) shows RGB image captured through the system with appropriate labels. B) Pixel by pixel QDA classifier identifies where pulmonary vein exists. C) illustrates normal tissue’s probability distribution of the classifier. D) and E) are probability distributions of transmural and non-transmural lesions respectively. In F), each pixel values are classified to a corresponding tissue type. (G-L) shows direct comparison study of transmural and non-transmural lesions.
Fig. 9
Fig. 9 A) shows a human left atrium captured with digital camera (Nikon). Three irrigated transmural lesions are generated using RF catheter with saline port. B) represents histology of transmural lesion. Ablated areas are more purple relative to normal tissue. C) shows histology of normal tissue. Thicker endocardium is shown in human sample.
Fig. 10
Fig. 10 A) is an RGB composite image of human LA tissue sample with three irrigated lesions. B-F are the five spectral channels collected through our optical system. In all wavelength channels, irrigated lesions are difficult to locate without LOIs. In G), LOI 1 parameter highlights the three irrigated lesions that weren’t visible within individual wavelength channels shown in B-F. Also, gap between two lesions is clearly viewed. In H), LOI 2 map bears little to no lesion contrast.

Tables (3)

Tables Icon

Table 1 Optical depth penetration estimates from diffusion theory

Tables Icon

Table 2 Confusion matrix of QDA classifier based on reflectance

Tables Icon

Table 3 Confusion matrix of QDA classifier based on reflectance and LOI features

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

LO I 1 = 625nm 940nm #
LO I 2 = 530nm 450nm #

Metrics