Abstract

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of the preterm infant. Low abdominal tissue oxygen saturation (StO2) measured by near-infrared spectroscopy (NIRS) oximetry may be an early sign of NEC relevant for treating or even preventing NEC. However, current commercial NIRS oximeters provide inaccurate StO2 readings because they neglect stool as an abdominal absorber. To tackle this problem, we determined the optical properties of faeces of preterm infants to enable a correct abdominal StO2 measurement. In 25 preterm born infants (median age 31 0/7 ± 2 1/7 weeks, weight 1478 ± 511 g), we measured their first five stool probes with a VIS/NIR spectrometer and calculated the optical properties using the Inverse Adding Doubling (IAD) method. We obtained two absorption spectra representing meconium and transitional stool. Probabilistic cluster analysis correctly classified 96 out of 107 stool probes. The faeces spectra need to be considered to enable correct abdominal StO2 measurements with NIRS oximetry.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A comparison between two NIRS oximeters (INVOS, OxyPrem) using measurement on the arm of adults and head of infants after caesarean section

Simon Hyttel-Sorensen, Trine Witzner Hessel, Amalia la Cour, and Gorm Greisen
Biomed. Opt. Express 5(10) 3671-3683 (2014)

Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

Simon Hyttel-Sorensen, Line C. Sorensen, Joan Riera, and Gorm Greisen
Biomed. Opt. Express 2(11) 3047-3057 (2011)

Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy

Ajay Rajaram, Gemma Bale, Matthew Kewin, Laura B. Morrison, Ilias Tachtsidis, Keith St. Lawrence, and Mamadou Diop
Biomed. Opt. Express 9(6) 2588-2603 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
    [PubMed]
  2. H. Sørensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for NIRS-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2014).
    [PubMed]
  3. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
    [PubMed]
  4. M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “Review: A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spectrosc. 20(1), 43–55 (2012).
  5. L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
    [PubMed]
  6. M. D. Wider, “Hemodynamic Management and Regional Hemoglobin Oxygen Saturation (rSO2) of the Brain, Kidney and Gut,” J. Perinatol. Neonatol. 22, 57–60 (2009).
  7. P.-M. Fortune, M. Wagstaff, and A. J. Petros, “Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates,” Intensive Care Med. 27(8), 1401–1407 (2001).
    [PubMed]
  8. S. M. Bailey, K. D. Hendricks-Munoz, and P. Mally, “Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns,” Am. J. Perinatol. 31(4), 339–344 (2014).
    [PubMed]
  9. N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
    [PubMed]
  10. V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
    [PubMed]
  11. I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
    [PubMed]
  12. A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
    [PubMed]
  13. G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
    [PubMed]
  14. A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
    [PubMed]
  15. J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
    [PubMed]
  16. S. M. Bailey and P. V. Mally, “Review of splanchnic oximetry in clinical medicine,” J. Biomed. Opt. 21(9), 091306 (2016).
    [PubMed]
  17. S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
    [PubMed]
  18. S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
    [PubMed]
  19. N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
    [PubMed]
  20. S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
    [PubMed]
  21. M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Validation of near infrared spectroscopy to measure abdominal somatic tissue oxygen saturation in neonates,” J. Neonatal Perinatal Med. 6(1), 23–30 (2013).
    [PubMed]
  22. M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Testing a new NIRS method to measure regional mesenteric tissue oxygen saturation in preterm infants that compensates for meconium and transitional stool interference,” J. Neonatal Perinatal Med. 5, 9–16 (2012).
  23. A. Thompson, P. Benni, S. Seyhan, and R. Ehrenkranz, “Meconium and Transitional Stools May Cause Interference with Near-Infrared Spectroscopy Measurements of Intestinal Oxygen Saturation in Preterm Infants,” in Oxygen Transport to Tissue XXXIV, W. J. Welch, F. Palm, D. F. Bruley, and D. K. Harrison, eds. (Springer New York, New York, NY, 2013), pp. 287–292.
  24. H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
    [PubMed]
  25. P. Kubelka, “New contributions to the optics of intensely light-scattering materials,” J. Opt. Soc. Am. 38(5), 448–457 (1948).
    [PubMed]
  26. B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27(2), 413–422 (2012).
    [PubMed]
  27. I. J. Bigio and S. Fantini, Quantitative Biomedical Optics (Cambridge University Press, 2016).
  28. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [PubMed]
  29. S. A. Prahl, “The Adding-Doubling Method,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. Van Gemert, eds. (Springer US, Boston, MA, 1995), pp. 101–129.
  30. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9(4), 621–631 (1992).
  31. S. A. Prahl, “Everything I think you should know about Inverse Adding-Doubling,” Oregon Medical Laser Center, St. Vincent Hospital, 1–74 (2011).
  32. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [PubMed]
  33. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [PubMed]
  34. P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
    [PubMed]
  35. T. Naes, et al., A user friendly guide to multivariate calibration and classification (Chichester: NIR Publications, 2002).
  36. R. Wehrens, Chemometrics with R, 1 ed., Use R! (Springer-Verlag Berlin Heidelberg, 2011).
  37. H. Martens and E. Stark, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Pharm. Biomed. Anal. 9(8), 625–635 (1991).
    [PubMed]
  38. R. C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
  39. G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat. 6(2), 461–464 (1978).
  40. L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
    [PubMed]
  41. C. Fraley, A. Raftery, and L. Scrucca, “Normal mixture modeling for model-based clustering, classification, and density estimation,” R Package Version 4(7) (2014).
  42. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Dept. of Medical Physics and Bioengineering 342 (1991).
  43. S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
    [PubMed]
  44. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37(31), 7447–7458 (1998).
    [PubMed]
  45. J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.
  46. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [PubMed]
  47. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
    [PubMed]

2018 (1)

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

2017 (1)

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

2016 (3)

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
[PubMed]

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

S. M. Bailey and P. V. Mally, “Review of splanchnic oximetry in clinical medicine,” J. Biomed. Opt. 21(9), 091306 (2016).
[PubMed]

2015 (1)

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

2014 (3)

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

H. Sørensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for NIRS-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2014).
[PubMed]

S. M. Bailey, K. D. Hendricks-Munoz, and P. Mally, “Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns,” Am. J. Perinatol. 31(4), 339–344 (2014).
[PubMed]

2013 (3)

L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[PubMed]

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Validation of near infrared spectroscopy to measure abdominal somatic tissue oxygen saturation in neonates,” J. Neonatal Perinatal Med. 6(1), 23–30 (2013).
[PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

2012 (3)

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Testing a new NIRS method to measure regional mesenteric tissue oxygen saturation in preterm infants that compensates for meconium and transitional stool interference,” J. Neonatal Perinatal Med. 5, 9–16 (2012).

B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27(2), 413–422 (2012).
[PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “Review: A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spectrosc. 20(1), 43–55 (2012).

2011 (3)

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
[PubMed]

2010 (2)

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
[PubMed]

2009 (1)

M. D. Wider, “Hemodynamic Management and Regional Hemoglobin Oxygen Saturation (rSO2) of the Brain, Kidney and Gut,” J. Perinatol. Neonatol. 22, 57–60 (2009).

2007 (2)

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
[PubMed]

2003 (1)

S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
[PubMed]

2001 (1)

P.-M. Fortune, M. Wagstaff, and A. J. Petros, “Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates,” Intensive Care Med. 27(8), 1401–1407 (2001).
[PubMed]

2000 (1)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

1998 (1)

1996 (1)

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

1995 (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

1993 (1)

1992 (1)

1991 (1)

H. Martens and E. Stark, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Pharm. Biomed. Anal. 9(8), 625–635 (1991).
[PubMed]

1990 (1)

N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
[PubMed]

1979 (1)

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

1978 (1)

G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat. 6(2), 461–464 (1978).

1973 (1)

1948 (1)

Ahnen, L.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Akinkuotu, A. C.

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Amaram, A.

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

Andropoulos, D. B.

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

Arca, M. J.

N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
[PubMed]

Baerts, W.

L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[PubMed]

Bailey, S. M.

S. M. Bailey and P. V. Mally, “Review of splanchnic oximetry in clinical medicine,” J. Biomed. Opt. 21(9), 091306 (2016).
[PubMed]

S. M. Bailey, K. D. Hendricks-Munoz, and P. Mally, “Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns,” Am. J. Perinatol. 31(4), 339–344 (2014).
[PubMed]

Bannister, J.

N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
[PubMed]

Bel, Fv.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Benaron, D.

S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
[PubMed]

Bergstrom, D. E.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Bernal, N. P.

N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
[PubMed]

Blumenthal, S. G.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Bozzetti, V.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Brandt, M. L.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Burrin, D. G.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Chance, B.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

Chang, A. C.

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

Cortez, J.

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

Daimon, M.

DeMelo, A. E.

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

Deyo, D. J.

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

Di Costanzo Mata, A.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Dickerson, H. A.

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

Dix, L. M. L.

L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[PubMed]

Eble, B. K.

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

Engelhardt, B.

S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
[PubMed]

Ethun, C. G.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

Fantini, S.

Fop, M.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
[PubMed]

Fortune, P.-M.

P.-M. Fortune, M. Wagstaff, and A. J. Petros, “Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates,” Intensive Care Med. 27(8), 1401–1407 (2001).
[PubMed]

Franceschini, M. A.

Friedland, S.

S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
[PubMed]

Gatenby, J. C.

S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
[PubMed]

Gay, A. N.

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Gazzolo, D.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Germanier, C.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Ghanayem, N. S.

N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
[PubMed]

Giannios, P.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

Gratton, E.

Gravenstein, N.

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

Greisen, G.

Gupta, M.

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

Hale, G. M.

Hanson, F. W.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Hendricks-Munoz, K. D.

S. M. Bailey, K. D. Hendricks-Munoz, and P. Mally, “Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns,” Am. J. Perinatol. 31(4), 339–344 (2014).
[PubMed]

Hielscher, A. H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

Hoffman, G. M.

N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
[PubMed]

Ikeda, R. M.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Islam, S.

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

Isler, H.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

Jiang, J.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Johnson, N.

N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
[PubMed]

Johnson, V. A.

N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
[PubMed]

Kalyanov, A.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Karen, T.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Kleiser, S.

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “Review: A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spectrosc. 20(1), 43–55 (2012).

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Koutsoumpos, S.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

Kubelka, P.

Kurth, C. D.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Lazar, D. A.

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Lemmers, P. M. A.

L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[PubMed]

Lindner, S.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Liu, H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

Magliaro, T. J.

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Maier, J. S.

Mally, P.

S. M. Bailey, K. D. Hendricks-Munoz, and P. Mally, “Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns,” Am. J. Perinatol. 31(4), 339–344 (2014).
[PubMed]

Mally, P. V.

S. M. Bailey and P. V. Mally, “Review of splanchnic oximetry in clinical medicine,” J. Biomed. Opt. 21(9), 091306 (2016).
[PubMed]

Martens, H.

H. Martens and E. Stark, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Pharm. Biomed. Anal. 9(8), 625–635 (1991).
[PubMed]

Masumura, A.

Matiatou, M.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

McElroy, S.

S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
[PubMed]

McNamara, H.

N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
[PubMed]

McNeill, S.

S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
[PubMed]

Mimun, L. C.

B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27(2), 413–422 (2012).
[PubMed]

Moes, C. J. M.

Montenegro, L. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Moutzouris, K.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

Murphy, T. B.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
[PubMed]

Mushin, O. P.

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Naik-Mathuria, B.

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Naulaers, G.

Neu, J.

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

Nicolson, S. C.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Niforatos, N.

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Validation of near infrared spectroscopy to measure abdominal somatic tissue oxygen saturation in neonates,” J. Neonatal Perinatal Med. 6(1), 23–30 (2013).
[PubMed]

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Testing a new NIRS method to measure regional mesenteric tissue oxygen saturation in preterm infants that compensates for meconium and transitional stool interference,” J. Neonatal Perinatal Med. 5, 9–16 (2012).

Oh, S.

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

Olutoye, O. O.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Ostojic, J. J. D.

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Parachikov, I.

S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
[PubMed]

Patel, A. K.

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Paterlini, G.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Paunescu, L. A.

Petros, A. J.

P.-M. Fortune, M. Wagstaff, and A. J. Petros, “Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates,” Intensive Care Med. 27(8), 1401–1407 (2001).
[PubMed]

Pickering, J. W.

Pizzino, J.

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

Pollard, V.

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

Prahl, S. A.

Prough, D. S.

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

Querry, M. R.

Raftery, A. E.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
[PubMed]

Rais-Bahrami, K.

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Validation of near infrared spectroscopy to measure abdominal somatic tissue oxygen saturation in neonates,” J. Neonatal Perinatal Med. 6(1), 23–30 (2013).
[PubMed]

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Testing a new NIRS method to measure regional mesenteric tissue oxygen saturation in preterm infants that compensates for meconium and transitional stool interference,” J. Neonatal Perinatal Med. 5, 9–16 (2012).

Rasmussen, P.

H. Sørensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for NIRS-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2014).
[PubMed]

Rasmussen, R. D.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Rodriguez, M. A.

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Rome, J.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Ruebner, B. H.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Said, M. M.

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Validation of near infrared spectroscopy to measure abdominal somatic tissue oxygen saturation in neonates,” J. Neonatal Perinatal Med. 6(1), 23–30 (2013).
[PubMed]

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Testing a new NIRS method to measure regional mesenteric tissue oxygen saturation in preterm infants that compensates for meconium and transitional stool interference,” J. Neonatal Perinatal Med. 5, 9–16 (2012).

Sánchez Majos, S.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

Sardar, D. K.

B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27(2), 413–422 (2012).
[PubMed]

Sawhney, M.

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

Scholkmann, F.

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Schwarz, G.

G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat. 6(2), 461–464 (1978).

Scrucca, L.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
[PubMed]

Secher, N. H.

H. Sørensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for NIRS-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2014).
[PubMed]

Sheikh, F.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Smith, E. O. B.

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Soetikno, R.

S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
[PubMed]

Sood, B. G.

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

Sørensen, H.

H. Sørensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for NIRS-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2014).
[PubMed]

Stapleton, G. E.

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

Stark, A. R.

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Stark, E.

H. Martens and E. Stark, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Pharm. Biomed. Anal. 9(8), 625–635 (1991).
[PubMed]

Sterenborg, H. J. C. M.

Steven, J. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Stoddart, H. F.

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

Stoll, B.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

Taggart, D. B.

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Tagliabue, P. E.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

Tosetti, L.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Toutouzas, K. G.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

Uchida, T.

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

van Bel, F.

L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “Review: A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spectrosc. 20(1), 43–55 (2012).

van Gemert, M. J. C.

Visser, G. H. A.

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

Wagstaff, M.

P.-M. Fortune, M. Wagstaff, and A. J. Petros, “Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates,” Intensive Care Med. 27(8), 1401–1407 (2001).
[PubMed]

Watzman, H. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Welch, A. J.

Wider, M. D.

M. D. Wider, “Hemodynamic Management and Regional Hemoglobin Oxygen Saturation (rSO2) of the Brain, Kidney and Gut,” J. Perinatol. Neonatol. 22, 57–60 (2009).

Wolf, M.

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “Review: A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spectrosc. 20(1), 43–55 (2012).

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Young, C.

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

Yu, L.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

Yust, B. G.

B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27(2), 413–422 (2012).
[PubMed]

Zamora, I. J.

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Zografos, G. C.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

Am. J. Perinatol. (1)

S. M. Bailey, K. D. Hendricks-Munoz, and P. Mally, “Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns,” Am. J. Perinatol. 31(4), 339–344 (2014).
[PubMed]

Anesth. Analg. (1)

V. Pollard, D. S. Prough, A. E. DeMelo, D. J. Deyo, T. Uchida, and H. F. Stoddart, “Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo,” Anesth. Analg. 82(2), 269–277 (1996).
[PubMed]

Anesthesiology (1)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[PubMed]

Ann. Stat. (1)

G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat. 6(2), 461–464 (1978).

Appl. Opt. (4)

Biochem. J. (1)

S. G. Blumenthal, D. B. Taggart, R. D. Rasmussen, R. M. Ikeda, B. H. Ruebner, D. E. Bergstrom, and F. W. Hanson, “Conjugated and unconjugated bilirubins in humans and rhesus monkeys. Structural identity of bilirubins from biles and meconiums of newborn humans and rhesus monkeys,” Biochem. J. 179(3), 537–547 (1979).
[PubMed]

Front. Physiol. (1)

H. Sørensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for NIRS-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2014).
[PubMed]

Gastrointest. Endosc. (1)

S. Friedland, D. Benaron, I. Parachikov, and R. Soetikno, “Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry,” Gastrointest. Endosc. 57(4), 492–497 (2003).
[PubMed]

Intensive Care Med. (1)

P.-M. Fortune, M. Wagstaff, and A. J. Petros, “Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates,” Intensive Care Med. 27(8), 1401–1407 (2001).
[PubMed]

J. Biomed. Opt. (1)

S. M. Bailey and P. V. Mally, “Review of splanchnic oximetry in clinical medicine,” J. Biomed. Opt. 21(9), 091306 (2016).
[PubMed]

J. Biophotonics (2)

H. Isler, C. Germanier, L. Ahnen, J. Jiang, S. Lindner, A. Di Costanzo Mata, T. Karen, S. Sánchez Majos, M. Wolf, and A. Kalyanov, “Optical properties of mice’s stool in 550 to 1000 nm wavelength range,” J. Biophotonics 11(2), e201700076 (2018).
[PubMed]

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[PubMed]

J. Matern. Fetal Neonatal Med. (2)

J. Cortez, M. Gupta, A. Amaram, J. Pizzino, M. Sawhney, and B. G. Sood, “Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates,” J. Matern. Fetal Neonatal Med. 24(4), 574–582 (2011).
[PubMed]

V. Bozzetti, G. Paterlini, Fv. Bel, G. H. A. Visser, L. Tosetti, D. Gazzolo, and P. E. Tagliabue, “Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition,” J. Matern. Fetal Neonatal Med. 29(3), 443–446 (2016).
[PubMed]

J. Near Infrared Spectrosc. (1)

J. Neonatal Perinatal Med. (2)

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Validation of near infrared spectroscopy to measure abdominal somatic tissue oxygen saturation in neonates,” J. Neonatal Perinatal Med. 6(1), 23–30 (2013).
[PubMed]

M. M. Said, N. Niforatos, and K. Rais-Bahrami, “Testing a new NIRS method to measure regional mesenteric tissue oxygen saturation in preterm infants that compensates for meconium and transitional stool interference,” J. Neonatal Perinatal Med. 5, 9–16 (2012).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Pediatr. Surg. (2)

N. P. Bernal, G. M. Hoffman, N. S. Ghanayem, and M. J. Arca, “Cerebral and somatic near-infrared spectroscopy in normal newborns,” J. Pediatr. Surg. 45(6), 1306–1310 (2010).
[PubMed]

A. N. Gay, D. A. Lazar, B. Stoll, B. Naik-Mathuria, O. P. Mushin, M. A. Rodriguez, D. G. Burrin, and O. O. Olutoye, “Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets,” J. Pediatr. Surg. 46(6), 1034–1040 (2011).
[PubMed]

J. Perinat. Med. (1)

N. Johnson, V. A. Johnson, J. Bannister, and H. McNamara, “The effect of meconium on neonatal and fetal reflectance pulse oximetry,” J. Perinat. Med. 18(5), 351–355 (1990).
[PubMed]

J. Perinatol. (2)

S. Oh, C. Young, N. Gravenstein, S. Islam, and J. Neu, “Monitoring technologies in the neonatal intensive care unit: implications for the detection of necrotizing enterocolitis,” J. Perinatol. 30(11), 701–708 (2010).
[PubMed]

S. McNeill, J. C. Gatenby, S. McElroy, and B. Engelhardt, “Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants,” J. Perinatol. 31(1), 51–57 (2011).
[PubMed]

J. Perinatol. Neonatol. (1)

M. D. Wider, “Hemodynamic Management and Regional Hemoglobin Oxygen Saturation (rSO2) of the Brain, Kidney and Gut,” J. Perinatol. Neonatol. 22, 57–60 (2009).

J. Pharm. Biomed. Anal. (1)

H. Martens and E. Stark, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Pharm. Biomed. Anal. 9(8), 625–635 (1991).
[PubMed]

Lasers Med. Sci. (1)

B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27(2), 413–422 (2012).
[PubMed]

Med. Phys. (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[PubMed]

Pediatr. Crit. Care Med. (1)

A. K. Patel, D. A. Lazar, D. G. Burrin, E. O. B. Smith, T. J. Magliaro, A. R. Stark, M. L. Brandt, I. J. Zamora, F. Sheikh, A. C. Akinkuotu, and O. O. Olutoye, “Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis,” Pediatr. Crit. Care Med. 15(8), 735–741 (2014).
[PubMed]

Pediatr. Res. (1)

L. M. L. Dix, F. van Bel, W. Baerts, and P. M. A. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74(5), 557–563 (2013).
[PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

PLoS One (1)

I. J. Zamora, B. Stoll, C. G. Ethun, F. Sheikh, L. Yu, D. G. Burrin, M. L. Brandt, and O. O. Olutoye, “Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis,” PLoS One 10(6), e0125437 (2015).
[PubMed]

R J. (1)

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models,” R J. 8(1), 289–317 (2016).
[PubMed]

Tex. Heart Inst. J. (1)

G. E. Stapleton, B. K. Eble, H. A. Dickerson, D. B. Andropoulos, and A. C. Chang, “Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis,” Tex. Heart Inst. J. 34(4), 442–444 (2007).
[PubMed]

Other (10)

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics (Cambridge University Press, 2016).

A. Thompson, P. Benni, S. Seyhan, and R. Ehrenkranz, “Meconium and Transitional Stools May Cause Interference with Near-Infrared Spectroscopy Measurements of Intestinal Oxygen Saturation in Preterm Infants,” in Oxygen Transport to Tissue XXXIV, W. J. Welch, F. Palm, D. F. Bruley, and D. K. Harrison, eds. (Springer New York, New York, NY, 2013), pp. 287–292.

S. A. Prahl, “Everything I think you should know about Inverse Adding-Doubling,” Oregon Medical Laser Center, St. Vincent Hospital, 1–74 (2011).

S. A. Prahl, “The Adding-Doubling Method,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. Van Gemert, eds. (Springer US, Boston, MA, 1995), pp. 101–129.

T. Naes, et al., A user friendly guide to multivariate calibration and classification (Chichester: NIR Publications, 2002).

R. Wehrens, Chemometrics with R, 1 ed., Use R! (Springer-Verlag Berlin Heidelberg, 2011).

C. Fraley, A. Raftery, and L. Scrucca, “Normal mixture modeling for model-based clustering, classification, and density estimation,” R Package Version 4(7) (2014).

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Dept. of Medical Physics and Bioengineering 342 (1991).

R. C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.

J. J. D. Ostojic, H. Isler, S. Kleiser, T. Karen, M. Wolf, and F. Scholkmann, “Impact of skull thickness on cerebral NIRS oximetry in neonates: an in silico study,” Adv. Exp. Med. Biol.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The optical spectra estimated by IAD are shown in blue for all 107 complete stool spectra through their mean and standard error of the mean (SEM). As the stool probes differed in water content, which masked the µa and µs features we are interested in, a multiplicative signal correction (MSC) was applied.
Fig. 2
Fig. 2 PCA of all 107 stool spectra, with and without MSC. The scores are shown for the first two PCs for µa, µs and g. (a) The sample thickness and (b) mottle level of the stool are presented with colors. (a) The color coding varies from red to blue with increasing thickness. Humid stool probes were more transparent and hence data from thicker cuvettes more likely to be included. MSC removes the influence on sample thickness in PCA as shown in the lower subplots, effectively removing the influence of varying water content. (b) Meconium entails the probes with zero up to few beads, colored in dark and light red. Transitional stool probes contain many beads or have no more beads left, they are shown in light and dark blue. MSC uncovers the influence of the mottle level on PCA in µa as seen in the bottom left subplot.
Fig. 3
Fig. 3 PCA of all 107 MSC stool µa, µs and g spectra (a,b and c). A probabilistic cluster analysis was carried out on the scores of the first two principal components (PC), delivering two clusters for each property. In case of the µa spectra, these clusters coincide for 90% of all stool probes with the classification of stool into meconium (blue) and transitional stool (red). Following the development of µa from meconium to transitional stool, the clustering predicts a correct course for 17 out of 25 children (d).
Fig. 4
Fig. 4 The median µa, µs and g spectra for 107 meconium and transitional stool probes are shown with their standard error. The absorption µa, reduced scattering µs and anisotropy g coefficients are shown without (a, c, e) and with (b, d) multiplicative signal correction (MSC). Extinction coefficients of oxy- and deoxy-haemoglobin are shown in (f) for comparison.

Tables (1)

Tables Icon

Table 1 Data of all study subjects concerning gestational age, weight and stool probes measured. The number of stool probes measured in each category and their identification (ID) by the probabilistic clustering method is given in comparison to classification (class) by eye-sight.