Abstract

Brillouin spectroscopy is a well-established technology in condensed matter physics to characterize the mechanical properties of inert materials, and it has been extended very recently to the study of biological samples. Transparency is beneficial for samples to be properly analyzed by Brillouin spectroscopy. Here, we explored the efficacy of optical tissue clearing techniques to improve the acquisition of Brillouin spectra from biological tissues in order to analyze their biomechanical properties. We describe the first application of Brillouin scattering to optically cleared biological tissues with CUBIC protocol. We conclude that, within the range of error, tissue clearing does not modify the mechanical properties of the studied biological tissues.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D imaging in CUBIC-cleared mouse heart tissue: going deeper

Imke Nehrhoff, Diana Bocancea, Javier Vaquero, Juan José Vaquero, Jorge Ripoll, Manuel Desco, and María Victoria Gómez-Gaviro
Biomed. Opt. Express 7(9) 3716-3720 (2016)

Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

On-line optical clearing method for whole-brain imaging in mice

Hao Wu, Xiaoquan Yang, Siqi Chen, Liuyun Zhang, Ben Long, Chaozhen Tan, Jing Yuan, and Hui Gong
Biomed. Opt. Express 10(5) 2612-2622 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun and D. Chernyak, “Brillouin microscopy: assessing ocular tissue biomechanics,” Curr. Opin. Ophthalmol. 29(4), 299–305 (2018).
    [Crossref] [PubMed]
  2. J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
    [Crossref] [PubMed]
  3. F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
    [Crossref] [PubMed]
  4. F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
    [Crossref] [PubMed]
  5. R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).
  6. S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
    [Crossref] [PubMed]
  7. S. Corezzi, L. Comez, and M. Zanatta, “A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles,” J. Mol. Liq. 266, 460–466 (2018).
    [Crossref]
  8. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  9. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  10. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
    [Crossref] [PubMed]
  11. R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
    [Crossref] [PubMed]
  12. Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
    [Crossref] [PubMed]
  13. T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
    [Crossref] [PubMed]
  14. A. Feuchtinger, A. Walch, and M. Dobosz, “Deep tissue imaging: a review from a preclinical cancer research perspective,” Histochem. Cell Biol. 146(6), 781–806 (2016).
    [Crossref] [PubMed]
  15. F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
    [Crossref] [PubMed]
  16. E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
    [Crossref] [PubMed]
  17. E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
    [Crossref] [PubMed]
  18. E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
    [Crossref] [PubMed]
  19. I. Nehrhoff, D. Bocancea, J. Vaquero, J. J. Vaquero, J. Ripoll, M. Desco, and M. V. Gómez-Gaviro, “3D imaging in CUBIC-cleared mouse heart tissue: going deeper,” Biomed. Opt. Express 7(9), 3716–3720 (2016).
    [Crossref] [PubMed]
  20. I. Nehrhoff, J. Ripoll, R. Samaniego, M. Desco, and M. V. Gómez-Gaviro, “Looking inside the heart: a see-through view of the vascular tree,” Biomed. Opt. Express 8(6), 3110–3118 (2017).
    [Crossref] [PubMed]
  21. M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
    [Crossref] [PubMed]
  22. R. J. Jiménez Riobóo, V. Brien, and P. Pigeat, “Elastic properties in different nano-structured AlN films,” J. Mater. Sci. 45(2), 363–368 (2010).
    [Crossref]
  23. J. R. Sandercock, Trends in Brillouin Scattering: Studies of Opaque Materials, Supported Films, and Central Modes (Springer-Verlag, Berlin, Heidelberg, 1982).
  24. R. Vacher and L. Boyer, “Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants,” Phys. Rev. 6(2), 639–673 (1972).
    [Crossref]
  25. J. K. Küger, Optical Techniques to Characterize Polymer Systems in Studies in Polymer Science (Elsevier Amsterdam, 1989).
  26. P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).
  27. E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
    [Crossref]

2019 (1)

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

2018 (5)

S. H. Yun and D. Chernyak, “Brillouin microscopy: assessing ocular tissue biomechanics,” Curr. Opin. Ophthalmol. 29(4), 299–305 (2018).
[Crossref] [PubMed]

S. Corezzi, L. Comez, and M. Zanatta, “A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles,” J. Mol. Liq. 266, 460–466 (2018).
[Crossref]

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

2017 (3)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

I. Nehrhoff, J. Ripoll, R. Samaniego, M. Desco, and M. V. Gómez-Gaviro, “Looking inside the heart: a see-through view of the vascular tree,” Biomed. Opt. Express 8(6), 3110–3118 (2017).
[Crossref] [PubMed]

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

2016 (5)

I. Nehrhoff, D. Bocancea, J. Vaquero, J. J. Vaquero, J. Ripoll, M. Desco, and M. V. Gómez-Gaviro, “3D imaging in CUBIC-cleared mouse heart tissue: going deeper,” Biomed. Opt. Express 7(9), 3716–3720 (2016).
[Crossref] [PubMed]

A. Feuchtinger, A. Walch, and M. Dobosz, “Deep tissue imaging: a review from a preclinical cancer research perspective,” Histochem. Cell Biol. 146(6), 781–806 (2016).
[Crossref] [PubMed]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

2014 (3)

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

2010 (1)

R. J. Jiménez Riobóo, V. Brien, and P. Pigeat, “Elastic properties in different nano-structured AlN films,” J. Mater. Sci. 45(2), 363–368 (2010).
[Crossref]

2007 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

1980 (1)

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

1972 (1)

R. Vacher and L. Boyer, “Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants,” Phys. Rev. 6(2), 639–673 (1972).
[Crossref]

Abe, T.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Abuhattum, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Antonacci, G.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Balaban, E.

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

Barr, H.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Bocancea, D.

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

I. Nehrhoff, D. Bocancea, J. Vaquero, J. J. Vaquero, J. Ripoll, M. Desco, and M. V. Gómez-Gaviro, “3D imaging in CUBIC-cleared mouse heart tissue: going deeper,” Biomed. Opt. Express 7(9), 3716–3720 (2016).
[Crossref] [PubMed]

Borri, P.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Boyer, L.

R. Vacher and L. Boyer, “Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants,” Phys. Rev. 6(2), 639–673 (1972).
[Crossref]

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Brien, V.

R. J. Jiménez Riobóo, V. Brien, and P. Pigeat, “Elastic properties in different nano-structured AlN films,” J. Mater. Sci. 45(2), 363–368 (2010).
[Crossref]

Caponi, S.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Chernyak, D.

S. H. Yun and D. Chernyak, “Brillouin microscopy: assessing ocular tissue biomechanics,” Curr. Opin. Ophthalmol. 29(4), 299–305 (2018).
[Crossref] [PubMed]

Cojoc, G.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Comez, L.

S. Corezzi, L. Comez, and M. Zanatta, “A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles,” J. Mol. Liq. 266, 460–466 (2018).
[Crossref]

Corezzi, S.

S. Corezzi, L. Comez, and M. Zanatta, “A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles,” J. Mol. Liq. 266, 460–466 (2018).
[Crossref]

Czarske, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

David, A.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

del Monte, F.

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

Desco, M.

Dobosz, M.

A. Feuchtinger, A. Walch, and M. Dobosz, “Deep tissue imaging: a review from a preclinical cancer research perspective,” Histochem. Cell Biol. 146(6), 781–806 (2016).
[Crossref] [PubMed]

Dunlop, I. E.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).

Edginton, R. S.

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Eguchi, M.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Ferrer, M. L.

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

Feuchtinger, A.

A. Feuchtinger, A. Walch, and M. Dobosz, “Deep tissue imaging: a review from a preclinical cancer research perspective,” Histochem. Cell Biol. 146(6), 781–806 (2016).
[Crossref] [PubMed]

Fioretto, D.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Gómez-Gaviro, M. V.

Gong, H.

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Green, E.

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Guck, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Gutiérrez, M. C.

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Jiménez Riobóo, R. J.

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

R. J. Jiménez Riobóo, V. Brien, and P. Pigeat, “Elastic properties in different nano-structured AlN films,” J. Mater. Sci. 45(2), 363–368 (2010).
[Crossref]

Kabakova, I. V.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).

Kim, K.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Kishino, F.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Kiyonari, H.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Kuno, A.

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

Langbein, W.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Lorrio, M. T.

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

Luo, Q.

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

Madami, M.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

Masia, F.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Mattana, S.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Meng, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Miyawaki, A.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Möckel, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Möllmert, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Müller, P.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Nallala, J.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Nehrhoff, I.

Onoe, H.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Palombo, F.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Perrin, D.

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Pigeat, P.

R. J. Jiménez Riobóo, V. Brien, and P. Pigeat, “Elastic properties in different nano-structured AlN films,” J. Mater. Sci. 45(2), 363–368 (2010).
[Crossref]

Pompeiano, M.

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

Posada, E.

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

Qi, Y.

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

Randall, J. T.

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

Ripoll, J.

Roldán-Ruiz, M. J.

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

Ruberti, J. W.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).

Samaniego, R.

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Schlüßler, R.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Sherwood, J. M.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).

Shimizu, Y.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Steelman, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Stone, N.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

Susaki, E. A.

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Tainaka, K.

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Tamagnini, F.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Tawara, T.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Traverso, A. J.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Ueda, H. R.

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Vacher, R.

R. Vacher and L. Boyer, “Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants,” Phys. Rev. 6(2), 639–673 (1972).
[Crossref]

Vaquero, J.

Vaquero, J. J.

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

I. Nehrhoff, D. Bocancea, J. Vaquero, J. J. Vaquero, J. Ripoll, M. Desco, and M. V. Gómez-Gaviro, “3D imaging in CUBIC-cleared mouse heart tissue: going deeper,” Biomed. Opt. Express 7(9), 3716–3720 (2016).
[Crossref] [PubMed]

Vaughan, J. M.

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

Walch, A.

A. Feuchtinger, A. Walch, and M. Dobosz, “Deep tissue imaging: a review from a preclinical cancer research perspective,” Histochem. Cell Biol. 146(6), 781–806 (2016).
[Crossref] [PubMed]

Watanabe, T. M.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Winlove, C. P.

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

Wu, P. J.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).

Yakovlev, V. V.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Yamaguchi, S.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Yokota, H.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Yokoyama, C.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Yu, T.

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

Yukinaga, H.

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

Yun, S. H.

S. H. Yun and D. Chernyak, “Brillouin microscopy: assessing ocular tissue biomechanics,” Curr. Opin. Ophthalmol. 29(4), 299–305 (2018).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Zanatta, M.

S. Corezzi, L. Comez, and M. Zanatta, “A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles,” J. Mol. Liq. 266, 460–466 (2018).
[Crossref]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zhu, D.

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

Zimmermann, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Analyst (Lond.) (2)

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (1)

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Cell (2)

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

S. H. Yun and D. Chernyak, “Brillouin microscopy: assessing ocular tissue biomechanics,” Curr. Opin. Ophthalmol. 29(4), 299–305 (2018).
[Crossref] [PubMed]

Development (1)

M. V. Gómez-Gaviro, E. Balaban, D. Bocancea, M. T. Lorrio, M. Pompeiano, M. Desco, J. Ripoll, and J. J. Vaquero, “Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution,” Development 144(11), 2092–2097 (2017).
[Crossref] [PubMed]

Histochem. Cell Biol. (1)

A. Feuchtinger, A. Walch, and M. Dobosz, “Deep tissue imaging: a review from a preclinical cancer research perspective,” Histochem. Cell Biol. 146(6), 781–806 (2016).
[Crossref] [PubMed]

J. Biophotonics (3)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

T. Yu, Y. Qi, H. Gong, Q. Luo, and D. Zhu, “Optical clearing for multiscale biological tissues,” J. Biophotonics 11(2), e201700187 (2018).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

J. Mater. Sci. (1)

R. J. Jiménez Riobóo, V. Brien, and P. Pigeat, “Elastic properties in different nano-structured AlN films,” J. Mater. Sci. 45(2), 363–368 (2010).
[Crossref]

J. Mol. Liq. (2)

S. Corezzi, L. Comez, and M. Zanatta, “A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles,” J. Mol. Liq. 266, 460–466 (2018).
[Crossref]

E. Posada, M. J. Roldán-Ruiz, R. J. Jiménez Riobóo, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, “Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy,” J. Mol. Liq. 276, 196–203 (2019).
[Crossref]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Nat. Protoc. (1)

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, and H. R. Ueda, “Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging,” Nat. Protoc. 10(11), 1709–1727 (2015).
[Crossref] [PubMed]

Nature (1)

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

Phys. Rev. (1)

R. Vacher and L. Boyer, “Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants,” Phys. Rev. 6(2), 639–673 (1972).
[Crossref]

Sci. Rep. (1)

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Other (4)

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy,” J. Vis. Exp. (115), (2016).

J. R. Sandercock, Trends in Brillouin Scattering: Studies of Opaque Materials, Supported Films, and Central Modes (Springer-Verlag, Berlin, Heidelberg, 1982).

J. K. Küger, Optical Techniques to Characterize Polymer Systems in Studies in Polymer Science (Elsevier Amsterdam, 1989).

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, and I. E. Dunlop, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” 15, 561–562 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 CUBIC protocol for clearing mouse heart and brain. Animals were perfused with 4% PFA and brain and heart were dissected out. The CUBIC method was used to clear the tissues and a vibratome was used to slice the tissue. On the superior part the steps of the protocol are described. The superior pictures represent, on the left, an unclear (left) and cleared (right) mouse brain and in the inferior part an unclear (left) and cleared (right) mouse are represent.
Fig. 2
Fig. 2 Brillouin spectroscopy set-up. (a) Picture of the Brillouin light scattering apparatus with the possibility of performing classical as well as micro Brillouin spectroscopy. (b) Schematics of the micro-Brillouin set-up. Laser light is directed into a modified reflected light microscope. Backscattered light is collected and the Rayleigh light is chopped with a mechanical shutter in order to protect the photomultiplier.
Fig. 3
Fig. 3 Effect of brain tissue clearing on Brillouin spectra. (a-c) Optical image (a) and Brillouin scattering spectrum (b, c) of uncleared brain sections. (d-f) Optical image (d) and Brillouin scattering spectra (e,f) of cleared brain sections. Different colours represent different tissue areas as indicated in A, B, C and D. 50X (b, e) and 20X (c, f) objectives were used.
Fig. 4
Fig. 4 Effect of heart tissue clearing on Brillouin spectra. (a-c) Optical image (a) and Brillouin scattering spectrum (b, c) of uncleared heart sections. (d-f) Optical image (d) and Brillouin scattering spectrum (e, f) of cleared heart sections. Different colors represent different tissue areas as indicated in A, B, C and D. 50X (b, e) and 20X (c, f) objectives were used. (g, h) Result of a non linear squares fit (red line) of the experimental data (circles) using a simple lorentzian function plus a suited background function for the anti-stokes side of the Brillouin spectrum. (g) not cleared heart sample tissue and (h) cleared heart sample tissue.
Fig. 5
Fig. 5 Brillouin spectroscopy for different histological layers of the heart. (a) Optical image of cleared transversal heart cross-section were acquired with a Stereolupe. (b, c) Magnification of the areas I and II respectively and analysed with Brillouin spectroscopy. IA, epicardial layer; IB, myocardium; IIC, endocardium. Optical images were acquired with a 20X objective. The purple circles represent the area of the scattering volume. These areas result bigger than expected due to very high elastic scattering on the tissue surface. (d, e) Brillouin scattering spectrum of the three indicated areas in (B) and (C). Different colours represent the different tissue areas (A, B and C). (f) Result of a non linear squares fit (red line) of the experimental data (circles) using a simple lorentzian function plus a suited background function for the stokes side of the Brillouin spectrum of the A region shown in Fig. 5(e).
Fig. 6
Fig. 6 Brillouin spectroscopy map of cleared heart sections. (a, b) Optical images of heart cross-section with (a) and without (b) crossed polarizers obtained with a 20X objective. (c, d) Colour maps showing the spatial distribution of the Brillouin frequency shift and hypersonic attenuation of the scanned area respectively. The dimension of the scanned matrix is 50x30 μm2 with spectra recorded in 10 μm steps and with a 20X objective. Brown and black areas indicate the frontier region, in which there were no peaks. The first peak measured was at the left inferior corner and the last one was at the right superior corner.

Tables (3)

Tables Icon

Table 1 Brillouin spectroscopy on clearing reagents. Distilled H2O, fresh Reagent 1 (R1) and R1 measurement after heart and brain clearing. 90A scattering geometry and backscattering geometry were used simultaneously in order to asses hypersonic sound velocity and refractive index [27]. For comparison, the refractive index was also measured with a standard Abbe refractometer (nA).

Tables Icon

Table 2 Quantifications of Brillouin spectroscopy brain sections. Frequency shift (f) and Half Width at Half Maximum (Γ) of the Brillouin peak derived from fit analysis of the spectra in the linear scan. NC Non cleared, C: cleared.

Tables Icon

Table 3 Quantifications of Brillouin spectroscopy heart sections. Frequency shift (f) and Half Width at Half Maximum (Γ) of the Brillouin peak derived from fit analysis of the spectra in the linear scan. NC Not cleared, C: cleared.