Abstract

Time-resolved near infrared spectroscopy is considered to be a gold standard technique when measuring absolute values of tissue optical properties, as it provides separable and independent information about both tissue absorption and scattering. However, time-resolved instruments require an accurate characterization by measuring the instrument response function in order to decouple the contribution of the instrument itself from the measurement. In this work, a new approach to the methodology of analysing time-resolved data is presented where the influence of instrument response function is eliminated from the data and a self-calibrating analysis is proposed. The proposed methodology requires an instrument to provide at least two wavelengths and allows spectral parameters recovery (optical properties or constituents concentrations and reduced scatter amplitude and power). Phantom and in-vivo data from two different time-resolved systems are used to validate the accuracy of the proposed self-calibrating approach, demonstrating that parameters recovery compared to the conventional curve fitting approach is within 10% and benefits from introducing a spectral constraint to the reconstruction problem. It is shown that a multi-wavelength time-resolved data can be used for parameters recovery directly without prior calibration (instrument response function measurement).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved near infrared light propagation using frequency domain superposition

Stanislaw Wojtkiewicz, Turgut Durduran, and Hamid Dehghani
Biomed. Opt. Express 9(1) 41-54 (2018)

Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes

Anna Gerega, Daniel Milej, Wojciech Weigl, Michal Kacprzak, and Adam Liebert
Biomed. Opt. Express 9(7) 2974-2993 (2018)

Time-resolved subtraction method for measuring optical properties of turbid media

Daniel Milej, Androu Abdalmalak, Dariusz Janusek, Mamadou Diop, Adam Liebert, and Keith St. Lawrence
Appl. Opt. 55(7) 1507-1513 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
    [Crossref] [PubMed]
  2. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
    [Crossref] [PubMed]
  3. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
    [Crossref] [PubMed]
  4. S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
    [Crossref] [PubMed]
  5. A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
    [Crossref] [PubMed]
  6. A. Rajaram, G. Bale, M. Kewin, L. B. Morrison, I. Tachtsidis, K. St Lawrence, and M. Diop, “Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy,” Biomed. Opt. Express 9(6), 2588–2603 (2018).
    [Crossref] [PubMed]
  7. F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
    [PubMed]
  8. W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
    [Crossref] [PubMed]
  9. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
    [Crossref] [PubMed]
  10. W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
    [Crossref] [PubMed]
  11. D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
    [Crossref] [PubMed]
  12. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
    [Crossref] [PubMed]
  13. C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
    [Crossref] [PubMed]
  14. M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
    [Crossref] [PubMed]
  15. J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).
    [Crossref] [PubMed]
  16. M. Diop and K. St Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett. 37(12), 2358–2360 (2012).
    [Crossref] [PubMed]
  17. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [Crossref] [PubMed]
  18. Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
    [Crossref] [PubMed]
  19. A. Puszka, L. Hervé, A. Planat-Chrétien, A. Koenig, J. Derouard, and J.-M. Dinten, “Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion,” Biomed. Opt. Express 4(4), 569–583 (2013).
    [Crossref] [PubMed]
  20. J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Chromophore decomposition in multispectral time-resolved diffuse optical tomography,” Biomed. Opt. Express 8(10), 4772–4787 (2017).
    [Crossref] [PubMed]
  21. D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
    [Crossref] [PubMed]
  22. S. Wojtkiewicz, T. Durduran, and H. Dehghani, “Time-resolved near infrared light propagation using frequency domain superposition,” Biomed. Opt. Express 9(1), 41–54 (2018).
    [Crossref] [PubMed]
  23. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
    [Crossref] [PubMed]
  24. S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
    [Crossref]
  25. A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
    [Crossref] [PubMed]
  26. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 1858–1869 (2005).
    [Crossref] [PubMed]
  27. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
    [Crossref] [PubMed]
  28. S. Prahl, “Optical Absorption of Hemoglobin”, retrieved https://omlc.org/spectra/hemoglobin/ .
  29. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
    [Crossref] [PubMed]
  30. Q. Fang and D. A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref] [PubMed]
  31. A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. V. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” in (SPIE, 2015), 10.
  32. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
    [Crossref] [PubMed]
  33. A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).
    [Crossref] [PubMed]
  34. A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7(1), 3819 (2017).
    [Crossref] [PubMed]
  35. F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express 15(26), 18168–18175 (2007).
    [Crossref] [PubMed]
  36. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  37. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
    [Crossref] [PubMed]

2018 (6)

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

A. Rajaram, G. Bale, M. Kewin, L. B. Morrison, I. Tachtsidis, K. St Lawrence, and M. Diop, “Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy,” Biomed. Opt. Express 9(6), 2588–2603 (2018).
[Crossref] [PubMed]

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
[PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

S. Wojtkiewicz, T. Durduran, and H. Dehghani, “Time-resolved near infrared light propagation using frequency domain superposition,” Biomed. Opt. Express 9(1), 41–54 (2018).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (7)

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

2015 (1)

2014 (2)

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

M. Diop and K. St Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett. 37(12), 2358–2360 (2012).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

2011 (1)

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

2010 (1)

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Fang and D. A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2003 (2)

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

1998 (1)

Abdalmalak, A.

Andersson-Engels, S.

Aranda, G.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Bale, G.

Bargigia, I.

Bassi, A.

Boas, D. A.

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Colombo, L.

Contini, D.

Cubeddu, R.

D’Andrea, C.

Dalla Mora, A.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Dehghani, H.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Wojtkiewicz, T. Durduran, and H. Dehghani, “Time-resolved near infrared light propagation using frequency domain superposition,” Biomed. Opt. Express 9(1), 41–54 (2018).
[Crossref] [PubMed]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 1858–1869 (2005).
[Crossref] [PubMed]

Derouard, J.

Di Ninni, P.

Di Sieno, L.

Dinten, J.-M.

Diop, M.

Dunne, L.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
[PubMed]

Durduran, T.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Wojtkiewicz, T. Durduran, and H. Dehghani, “Time-resolved near infrared light propagation using frequency domain superposition,” Biomed. Opt. Express 9(1), 41–54 (2018).
[Crossref] [PubMed]

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Erdmann, R.

Fang, Q.

Farina, A.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Chromophore decomposition in multispectral time-resolved diffuse optical tomography,” Biomed. Opt. Express 8(10), 4772–4787 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).
[Crossref] [PubMed]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

Farzam, P.

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Foschum, F.

Fugger, O.

Gabrusiewicz, A.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Gerega, A.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Giusto, A.

Grosenick, D.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

Guggenheim, J. A.

Hale, L.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
[PubMed]

Halperin, I.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Hanzu, F. A.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Hervé, L.

Holt, R. W.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Jäger, M.

Janusek, D.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

Jiang, S.

Johansson, J.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Kacprzak, M.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Kewin, M.

Kienle, A.

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7(1), 3819 (2017).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).
[Crossref] [PubMed]

Koenig, A.

Konugolu Venkata Sekar, S.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

Lange, F.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
[PubMed]

Leblond, F.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Liebert, A.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Liemert, A.

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7(1), 3819 (2017).
[Crossref] [PubMed]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).
[Crossref] [PubMed]

Lindner, C.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Macdonald, R.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

Madycki, G.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Maniewski, R.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Martelli, F.

Martinenghi, E.

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Milej, D.

Minnema, J.

Moeller, M.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

Möller, M.

Mora, A. D.

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Chromophore decomposition in multispectral time-resolved diffuse optical tomography,” Biomed. Opt. Express 8(10), 4772–4787 (2017).
[Crossref] [PubMed]

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Mora, M.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Morrison, L. B.

Obrig, H.

Pagliazzi, M.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 1858–1869 (2005).
[Crossref] [PubMed]

Pifferi, A.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Chromophore decomposition in multispectral time-resolved diffuse optical tomography,” Biomed. Opt. Express 8(10), 4772–4787 (2017).
[Crossref] [PubMed]

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).
[Crossref] [PubMed]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express 15(26), 18168–18175 (2007).
[Crossref] [PubMed]

A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref] [PubMed]

Planat-Chrétien, A.

Pogue, B. W.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 1858–1869 (2005).
[Crossref] [PubMed]

Puszka, A.

Rajaram, A.

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Reitzle, D.

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7(1), 3819 (2017).
[Crossref] [PubMed]

Rinneberg, H.

Sassaroli, A.

Sawosz, P.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Sekar, S. K. V.

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Simon, E.

Spinelli, L.

Squarcia, M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 1858–1869 (2005).
[Crossref] [PubMed]

St Lawrence, K.

Staszkiewicz, W.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Steinbrink, J.

Swartling, J.

Tachtsidis, I.

A. Rajaram, G. Bale, M. Kewin, L. B. Morrison, I. Tachtsidis, K. St Lawrence, and M. Diop, “Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy,” Biomed. Opt. Express 9(6), 2588–2603 (2018).
[Crossref] [PubMed]

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
[PubMed]

Taroni, P.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref] [PubMed]

Tichauer, K. M.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Toczylowska, B.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

Torricelli, A.

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express 15(26), 18168–18175 (2007).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

Valentini, G.

Villringer, A.

Vishwanath, K.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Wabnitz, H.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Weigel, U. M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Weigl, W.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Wojtkiewicz, S.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

S. Wojtkiewicz, T. Durduran, and H. Dehghani, “Time-resolved near infrared light propagation using frequency domain superposition,” Biomed. Opt. Express 9(1), 41–54 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Yodh, A. G.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

Zaccanti, G.

Zhu, Q.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Zouaoui, J.

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (8)

A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomed. Opt. Express 9(7), 2974–2993 (2018).
[Crossref] [PubMed]

A. Puszka, L. Hervé, A. Planat-Chrétien, A. Koenig, J. Derouard, and J.-M. Dinten, “Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion,” Biomed. Opt. Express 4(4), 569–583 (2013).
[Crossref] [PubMed]

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Chromophore decomposition in multispectral time-resolved diffuse optical tomography,” Biomed. Opt. Express 8(10), 4772–4787 (2017).
[Crossref] [PubMed]

S. Wojtkiewicz, T. Durduran, and H. Dehghani, “Time-resolved near infrared light propagation using frequency domain superposition,” Biomed. Opt. Express 9(1), 41–54 (2018).
[Crossref] [PubMed]

M. Pagliazzi, S. K. V. Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. D. Mora, A. Torricelli, A. Pifferi, and T. Durduran, “Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results,” Biomed. Opt. Express 8(11), 5311–5325 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).
[Crossref] [PubMed]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref] [PubMed]

A. Rajaram, G. Bale, M. Kewin, L. B. Morrison, I. Tachtsidis, K. St Lawrence, and M. Diop, “Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy,” Biomed. Opt. Express 9(6), 2588–2603 (2018).
[Crossref] [PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

S. K. V. Sekar, A. D. Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7100312 (2018).
[PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (4)

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Neuroimage (2)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

PLoS One (1)

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies,” PLoS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).
[Crossref] [PubMed]

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7(1), 3819 (2017).
[Crossref] [PubMed]

Other (2)

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. V. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” in (SPIE, 2015), 10.

S. Prahl, “Optical Absorption of Hemoglobin”, retrieved https://omlc.org/spectra/hemoglobin/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Instrument response functions (IRF) of POLIMI [24] and IBIB [25] time-resolved multi-wavelength instruments. Time domain (a-b) as measured, frequency domain amplitude (c-d) and phase (e-f) at all wavelengths. All IRFs are normalized by their integral and maxima are aligned in time. The 1% of maximum threshold in panels (a-b) is used for visualization purposes.
Fig. 2
Fig. 2 Temporal point spread functions (TPSF) in time domain (TPSF(t)) and phase shift of their frequency components (TPSF(ω)) as calculated for a semi-infinite model. rsd – source-detector separation, Tmax – time of the TPSF maximum, ⟨t⟩ - mean time of flight of photons. The phase shift in radians is converted to time. The TPSF amplitude is arbitrary.
Fig. 3
Fig. 3 Time-resolved simulated DTOFs in time domain (a) and in frequency domain (b-c) normalized as shown in Eq. (4).
Fig. 4
Fig. 4 Parameters recovered from time-resolved data using time (utilising IRF) and frequency (no IRF used) domain approaches. Recovered tissue constituents and scattering (1st row) and recovery errors (2nd – 3rd rows). Statistics created for 30 runs of data generation/recovery procedures.
Fig. 5
Fig. 5 Solid phantom parameters recovered from time-resolved data using curve fitting in time domain (utilising IRF) and the frequency domain approach (no IRF used as in Eq. (4)).
Fig. 6
Fig. 6 Optical properties and tissue constituents as measured on a forearm during an arm occlusion (systolic pressure + 50 mmHg). Parameters recovered from time-resolved data using time (utilizing IRF) and frequency (no IRF used) domain approaches. To preserve clarity only 3 of 14 available wavelengths are shown (first, centre and last).

Tables (1)

Tables Icon

Table 1 Algorithm 1. Self-calibrating parameter recovery for time-resolved spectroscopy

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IRF( ω,λ ) IRF( ω N ,λ ) IRF( ω ) IRF( ω N ) ,
DTOF( t,λ )=k( λ )×[ TPSF( t,λ )*IRF( t,λ ) ], DTOF( ω,λ )=k( λ )×TPSF( ω,λ )×IRF( ω,λ ) ,
DTOF( ω,λ ) DTOF( ω N ,λ ) = k( λ )×TPSF( ω,λ )×IRF( ω,λ ) k( λ )×TPSF( ω N ,λ )×IRF( ω N ,λ ) = TPSF( ω,λ ) TPSF( ω N ,λ ) × IRF( ω ) IRF( ω N )
DTOF( ω,λ ) DTOF( ω N ,λ ) DTOF( ω, λ N ) DTOF( ω N , λ N ) = TPSF( ω,λ ) TPSF( ω N ,λ ) TPSF( ω, λ N ) TPSF( ω N , λ N )  DTO F N ( ω,λ )=TPS F N ( ω,λ ),