Abstract

We have investigated the accuracy and precision of “the BabyLux device”, a hybrid time-resolved near-infrared (TRS) and diffuse correlation spectroscopy (DCS) neuro-monitor for the pre-term infant. Numerical data with realistic noise were simulated and analyzed using the BabyLux device as a reference system and different experimental and analysis parameters. The results describe the limits for the precision and the accuracy to be expected. The dependence of these limits on different experimental conditions and choices of the analysis method is also described. Experiments demonstrate comparable values for precision with respect to the simulation results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a stand-alone DCS system for monitoring absolute cerebral blood flow

Mahro Khalid, Daniel Milej, Ajay Rajaram, Androu Abdalmalak, Laura Morrison, Mamadou Diop, and Keith St. Lawrence
Biomed. Opt. Express 10(9) 4607-4620 (2019)

Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

Mamadou Diop, Kyle Verdecchia, Ting-Yim Lee, and Keith St Lawrence
Biomed. Opt. Express 2(7) 2068-2081 (2011)

Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy

Ajay Rajaram, Gemma Bale, Matthew Kewin, Laura B. Morrison, Ilias Tachtsidis, Keith St. Lawrence, and Mamadou Diop
Biomed. Opt. Express 9(6) 2588-2603 (2018)

References

  • View by:
  • |
  • |
  • |

  1. “BabyLux - An Optical Neuro-Monitor of Cerebral Oxygen Metabolism and Blood Flow for Neonatology,” http://www.babylux-project.eu/ .
  2. M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. optics 28, 2331–2336 (1989).
    [Crossref]
  3. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
    [Crossref]
  4. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
    [Crossref]
  5. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. biomedical optics 12, 062104 (2007).
    [Crossref]
  6. G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
    [Crossref] [PubMed]
  7. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, Techniques, and Limitations of Near Infrared Spectroscopy,” Can. J. Appl. Physiol. 29, 463–487 (2004).
    [Crossref] [PubMed]
  8. I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 030401 (2016).
    [Crossref] [PubMed]
  9. L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
    [Crossref]
  10. B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. medicine biology 39, 1157–1180 (1994).
    [Crossref]
  11. T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
    [Crossref] [PubMed]
  12. M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
    [Crossref]
  13. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855–1858 (1995).
    [Crossref] [PubMed]
  14. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192 (1997).
    [Crossref]
  15. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
    [Crossref]
  16. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
    [Crossref]
  17. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
    [Crossref] [PubMed]
  18. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
    [Crossref] [PubMed]
  19. V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
    [Crossref]
  20. P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).
  21. P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).
  22. J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
    [Crossref]
  23. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).
  24. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
    [Crossref]
  25. T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. thesis, University of Pennsylvania (2004).
  26. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
    [Crossref]
  27. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
    [Crossref]
  28. R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
    [Crossref]
  29. L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
    [Crossref]
  30. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.
  31. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
    [Crossref]
  32. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115–1124 (2001).
    [Crossref] [PubMed]
  33. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
    [Crossref]
  34. L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
    [Crossref]
  35. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. optics 36, 4587–4599 (1997).
    [Crossref]
  36. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE, 2010).
  37. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727 (1994).
    [Crossref]
  38. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, vol. 81 of Springer Series in Chemical Physics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005).
    [Crossref]
  39. D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
    [Crossref] [PubMed]
  40. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
    [Crossref]
  41. C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
    [Crossref] [PubMed]
  42. C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral Hemodynamics,” Ph.D. thesis, University of Pennsylvania (2007).
  43. L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, Ltd, 2012).
  44. S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” https://omlc.org/spectra/hemoglobin/summary.html (1998).
  45. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
    [Crossref] [PubMed]
  46. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [Crossref] [PubMed]
  47. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
    [Crossref]
  48. M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).
  49. A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).
  50. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
    [Crossref]
  51. M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
    [Crossref]
  52. L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. biomedical optics 11, 054005 (2006).
    [Crossref]
  53. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
    [Crossref]
  54. P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of absolute scattering and absorption coefficient and the blood flow index,” J. Biomed. Opt. 20, 55001 (2015).
    [Crossref]
  55. D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
    [Crossref]
  56. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [Crossref] [PubMed]

2018 (1)

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

2017 (5)

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

2016 (4)

G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
[Crossref] [PubMed]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 030401 (2016).
[Crossref] [PubMed]

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

2015 (1)

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of absolute scattering and absorption coefficient and the blood flow index,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref]

2014 (5)

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

2013 (2)

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

2011 (2)

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

2010 (3)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
[Crossref]

2009 (1)

2007 (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. biomedical optics 12, 062104 (2007).
[Crossref]

2006 (2)

C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
[Crossref] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. biomedical optics 11, 054005 (2006).
[Crossref]

2005 (2)

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

2004 (1)

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, Techniques, and Limitations of Near Infrared Spectroscopy,” Can. J. Appl. Physiol. 29, 463–487 (2004).
[Crossref] [PubMed]

2001 (2)

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115–1124 (2001).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

2000 (1)

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

1999 (1)

1998 (1)

1997 (3)

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

1995 (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

1994 (3)

B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. medicine biology 39, 1157–1180 (1994).
[Crossref]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727 (1994).
[Crossref]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[Crossref] [PubMed]

1989 (1)

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. optics 28, 2331–2336 (1989).
[Crossref]

Airantzis, D.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Alianelli, L.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

Andersson-Engels, S.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
[Crossref]

Andresen, B.

G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
[Crossref] [PubMed]

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Arger, P. H.

Avrillier, S.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
[Crossref]

Bassani, M.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

Bassi, A.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Bechek, S.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, vol. 81 of Springer Series in Chemical Physics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005).
[Crossref]

Bigio, I. J.

Binzoni, T.

Boas, D. A.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192 (1997).
[Crossref]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

Boyer, J.

Buckley, E.

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Buckley, E. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

Buttafava, M.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

Caffini, M.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

Carli, A. De

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Carp, S.

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Carp, S. A.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

Cattarossi, L.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

Cavalieri, S.

Chance, B.

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115–1124 (2001).
[Crossref] [PubMed]

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. optics 28, 2331–2336 (1989).
[Crossref]

Cheng, R.

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Cheung, C.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

Choe, R.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

Contini, D.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. optics 36, 4587–4599 (1997).
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Cook, N. M.

Cooper, R. J.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Cope, M.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[Crossref] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Culver, J. P.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

Dehaes, M.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

Del Bianco, S.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE, 2010).

Delpy, D. T.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[Crossref] [PubMed]

Detre, J. A.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Donat, R.

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Dong, L.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Durduran, T.

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of absolute scattering and absorption coefficient and the blood flow index,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
[Crossref] [PubMed]

T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. thesis, University of Pennsylvania (2004).

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

Durian, D. J.

Durning, S. M.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Erdmann, R.

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Everdell, N.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Farina, A.

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Farzam, P.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of absolute scattering and absorption coefficient and the blood flow index,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref]

Feng, T.-C.

Fenoglio, A.

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. biomedical optics 12, 062104 (2007).
[Crossref]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, Techniques, and Limitations of Near Infrared Spectroscopy,” Can. J. Appl. Physiol. 29, 463–487 (2004).
[Crossref] [PubMed]

Ferry, A. L.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

Filippin, L.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

Fló, A.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

Franceschini, M.

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Franceschini, M. A.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

Fumagalli, M.

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Furuya, D.

Fuselier, T.

Gaynor, J. W.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Gibson, A. P.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Giovannella, M.

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Grant, E.

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Grant, P. E.

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

Greenberg, J. H.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

Greisen, G.

G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
[Crossref] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. biomedical optics 11, 054005 (2006).
[Crossref]

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Grosenick, D.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Hagan, K.

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

Haskell, R. C.

He, L.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

Hebden, J. C.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Hurt, H. H.

Hyttel-Sørensen, S.

G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
[Crossref] [PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Inder, T.

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Irwin, D.

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE, 2010).

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Jain, V.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

Johnson, T. M.

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Kim, M. N.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Koenig, N.

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Kudrimoti, M.

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Lavin, N. A.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

Lemieux, P. A.

Licht, D. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

Lin, P.

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Lin, P. Y.

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

Lin, P.-Y. I.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

Lin, Y.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

Liu, D. L.

Lynch, J. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

Macagno, F.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

Macdonald, R.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Magazov, S.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Magee, E.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Martelli, F.

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. optics 36, 4587–4599 (1997).
[Crossref]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE, 2010).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Martinenghi, E.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

Mason, S. E.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Matcher, S. J.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[Crossref] [PubMed]

McAdams, M. S.

Mehler, J.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Möller, M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Montenegro, L. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Mora, A. D.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

Mosca, F.

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Mottola, L.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, Techniques, and Limitations of Near Infrared Spectroscopy,” Can. J. Appl. Physiol. 29, 463–487 (2004).
[Crossref] [PubMed]

Mourant, J. R.

Naim, M. Y.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Nghiem, H. L.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Nicolson, S. C.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Nilsson, A. M.

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Ntziachristos, V.

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115–1124 (2001).
[Crossref] [PubMed]

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Pagliazzi, M.

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Passera, S.

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Patel, M.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

Patterson, M.

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. optics 28, 2331–2336 (1989).
[Crossref]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. medicine biology 39, 1157–1180 (1994).
[Crossref]

Pesenti, N.

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Pienaar, R.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

Pifferi, A.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Plomgaard, A. M.

G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. medicine biology 39, 1157–1180 (1994).
[Crossref]

Putt, M. E.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. biomedical optics 12, 062104 (2007).
[Crossref]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, Techniques, and Limitations of Near Infrared Spectroscopy,” Can. J. Appl. Physiol. 29, 463–487 (2004).
[Crossref] [PubMed]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

Rehberger, M.

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Renna, M.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

Rocchetti, I.

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Roche-Labarbe, N.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

Sakadžic, S.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Sassaroli, A.

Schmitt, R.

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

Scholkmann, F.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 030401 (2016).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Schultz, S.

Schwab, P. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

Sehgal, C. M.

Selb, J.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

Shang, Y.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Shenoy, A.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

Sliva, D. D.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

Sorensen, L. C.

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. biomedical optics 11, 054005 (2006).
[Crossref]

Spinelli, L.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Spray, T. L.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Stamm, H.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Sterenborg, H. J. C. M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Stevens, S. D.

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Sturesson, C.

Surova, A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

Sutin, J.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

Svaasand, L. O.

Svensson, T.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Swartling, J.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Tachtsidis, I.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 030401 (2016).
[Crossref] [PubMed]

Takahashi, K.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

Tamborini, D.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

Taroni, P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

Torricelli, A.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8, 2990 (2017).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Tosi, A.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

Tromberg, B. J.

Tsay, T.-T.

Tualle, J.-M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

van Veen, R. L. P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Varela, M.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Wabnitz, H.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Wang, J.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, Ltd, 2012).

Wehrli, F. W.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

Weigel, U. M.

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

Whelan, M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

Wilson, B.

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. optics 28, 2331–2336 (1989).
[Crossref]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. biomedical optics 12, 062104 (2007).
[Crossref]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Wu, H.-I.

L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, Ltd, 2012).

Wu, K.-C.

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

Yodh, A. G.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192 (1997).
[Crossref]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

Yu, G.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
[Crossref] [PubMed]

Zaccanti, G.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. optics 36, 4587–4599 (1997).
[Crossref]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE, 2010).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

Zangheri, L.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

Zappa, F.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

Zhou, C.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571 (2009).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125 (2006).
[Crossref] [PubMed]

C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral Hemodynamics,” Ph.D. thesis, University of Pennsylvania (2007).

Zimmerman, R. A.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

Zimmermann, B.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Zucchelli, L.

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

Appl. Opt. (2)

Appl. optics (3)

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. optics 44, 2104–2114 (2005).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. optics 36, 4587–4599 (1997).
[Crossref]

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. optics 28, 2331–2336 (1989).
[Crossref]

Biomed. Opt. Express (1)

Biomed. optics express (2)

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. optics express 4, 2893–2910 (2013).
[Crossref]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Optics Express 2, 552–567 (2011).
[Crossref]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. optics express 2, 1969–1985 (2011).
[Crossref]

Can. J. Appl. Physiol. (1)

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, Techniques, and Limitations of Near Infrared Spectroscopy,” Can. J. Appl. Physiol. 29, 463–487 (2004).
[Crossref] [PubMed]

Hum. brain mapping (1)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. brain mapping 31, 341–352 (2010).
[Crossref]

IEEE Photonics J. (1)

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J. 9, 2632061 (2017).
[Crossref]

IEEE Transactions on Biomed. Eng. (1)

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Transactions on Biomed. Eng. 60, 361–368 (2013).
[Crossref]

J. Biomed. Opt. (2)

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of absolute scattering and absorption coefficient and the blood flow index,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref]

J. biomedical optics (2)

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. biomedical optics 11, 054005 (2006).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. biomedical optics 12, 062104 (2007).
[Crossref]

J. Cereb. Blood Flow & Metab. (1)

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow & Metab. 34, 380–388 (2014).
[Crossref]

J. Opt. Soc. Am. A (3)

Med. Phys. (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[Crossref] [PubMed]

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115–1124 (2001).
[Crossref] [PubMed]

NeuroImage (3)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

Neurophotonics (6)

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5, 1 (2017).
[Crossref]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

G. Greisen, B. Andresen, A. M. Plomgaard, and S. Hyttel-Sørensen, “Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal,” Neurophotonics 3, 031407 (2016).
[Crossref] [PubMed]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 030401 (2016).
[Crossref] [PubMed]

L. Spinelli, L. Zucchelli, D. Contini, M. Caffini, J. Mehler, A. Fló, A. L. Ferry, L. Filippin, F. Macagno, L. Cattarossi, and A. Torricelli, “In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy,” Neurophotonics 4, 1 (2017).
[Crossref]

J. Selb, K.-C. Wu, J. Sutin, P.-Y. I. Lin, P. Farzam, S. Bechek, and A. Shenoy, “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients,” Neurophotonics 5, 1 (2018).
[Crossref]

Opt. Express (2)

Pediatr. research (1)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. research 58, 568–573 (2005).
[Crossref]

Phys. Med. Biol. (1)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[Crossref] [PubMed]

Phys. medicine biology (3)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. medicine biology 46, 2053–2065 (2001).
[Crossref]

B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. medicine biology 39, 1157–1180 (1994).
[Crossref]

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. medicine biology 45, 1359–1373 (2000).
[Crossref]

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

Reports on Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701 (2010).
[Crossref]

Rev. Sci. Instruments (1)

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden,“II MONSTIR: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instruments 85, 053105 (2014).
[Crossref]

Sci. Reports (2)

P. Y. Lin, K. Hagan, A. Fenoglio, P. E. Grant, and M. A. Franceschini, “Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage,” Sci. Reports 6, 1–8 (2016).

P. Farzam, E. Buckley, P. Lin, E. Grant, T. Inder, S. Carp, and M. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Reports 2017, 1–10 (2017).

Other (12)

T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. thesis, University of Pennsylvania (2004).

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” in Proc. SPIE 7174, OpticalTomography and Spectroscopy of Tissue VIII, vol. 7174 (2009), p. 717424.

“BabyLux - An Optical Neuro-Monitor of Cerebral Oxygen Metabolism and Blood Flow for Neonatology,” http://www.babylux-project.eu/ .

M. Pagliazzi, M. Giovannella, U. M. Weigel, A. Pifferi, A. Torricelli, and T. Durduran, “Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies,” in Biomedical Optics 2016, (OSA, Washington, D.C., 2016), p. JTu3A.25.
[Crossref]

M. Giovannella, D. Contini, M. Pagliazzi, A. Pifferi, L. Spinelli, R. Erdmann, R. Donat, I. Rocchetti, M. Rehberger, N. Koenig, R. Schmitt, A. Torricelli, T. Durduran, and U. M. Weigel, “BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy (DCS) and time resolved near infra-red spectroscopy (TR-NIRS) for neuro-monitoring of the premature newborn brain,” Neurophotonics accepted (2019).

A. De Carli, B. Andresen, M. Giovannella, T. Durduran, D. Contini, L. Spinelli, U. M. Weigel, S. Passera, N. Pesenti, F. Mosca, A. Torricelli, M. Fumagalli, and G. Greisen, “Cerebral oxygenation and blood flow in term infants during postnatal transition: the BabyLux project,” ADC Fetal NeonatalEd. accepted (2019).

C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral Hemodynamics,” Ph.D. thesis, University of Pennsylvania (2007).

L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, Ltd, 2012).

S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” https://omlc.org/spectra/hemoglobin/summary.html (1998).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, vol. 81 of Springer Series in Chemical Physics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005).
[Crossref]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The schematic of TRS (top row) and DCS (bottom row) simulation (from left to right, in light-gray) and analysis process (from right to left, in dark-gray).
Fig. 2
Fig. 2 The left column lists the questions raised to characterize the influence of various parameters on the accuracy and the precision of optical and hemodynamic parameters. The central column explains how the settings for curve simulation were defined in order to answer those questions. Finally, the right column focuses on the settings for analysis input parameters.
Fig. 3
Fig. 3 Right side, example of IRF(t), Rmodel (t) and of the 30 Rsim (t) generated at 760 nm. Left side, example of g 2 model ( τ ) and g 1 model ( τ ) and the 30 g 2 sim ( τ ) and g 1 sim ( τ ) generated in the simulation process. The dashed vertical lines highlight the fitting range.
Fig. 4
Fig. 4 CV and relative error of the fitted absorption μa and reduced scattering coefficient μ s   ' at 760 nm and hemodynamics parameters within thirty simulated curves at different counts levels. For optical properties, behavior of the other two wavelengths is equivalent. Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 5
Fig. 5 Standard deviation and CV of estimated StO2 at different StO2 levels within thirty simulated curves. Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 6
Fig. 6 CV of absorption coefficient μa (top row) reduced scattering coefficient μ s   ' (middle row) at 760 nm and oxygen saturation StO2 (bottom row) at different counts level, when a variability in t0 is considered in the TRS data simulation (standard deviation according to the legend). t0 is either kept fixed in the analysis (left column) or treated as fit parameter (right column). Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 7
Fig. 7 CV and relative error in oxygen saturation StO2 when water content is either under- or over-estimated by the analysis (90%) compared to the value used for the simulation (according to the x axis). The dashed vertical black line indicates the only case where the true value is considered in the analysis. Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 8
Fig. 8 CV and relative error in hemodynamic parameters obtained by simulated data when an a priori physiological variability is considered, at different count levels. In particular a CV of 7% is assumed for HbO2 concentration (red horizontal dashed line) and of 3% for Hb concentration (blue horizontal dashed line). Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 9
Fig. 9 CV and relative error in BFI estimation from simulated data at different count rate and averaging time .
Fig. 10
Fig. 10 Standard deviation and CV of BFI estimation from simulated data at different BFI levels. Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 11
Fig. 11 CV and relative error of BFI estimation from simulated data generated considering a certain CV for the optical properties in the data simulation, accordingly to the x and y axis. Count rate is 100 kHz and averaging time 1 s.
Fig. 12
Fig. 12 CV and relative error of BFI estimation from simulated data, at different count rate, when the value of β used for simulation (β = 0.48, dashed vertical line) and the one used as input in the analysis (according to the x axis) do not coincide. Error bars refer to the standard deviation over the ten sets of simulated data.
Fig. 13
Fig. 13 CV and relative error of BFI estimation from simulated curves when a physiological variability is assumed for BFI, according to y axis, at different intensity levels, according to x axis.
Fig. 14
Fig. 14 Variability of continuous DCS and TRS measurement on a piglet model during euthanasia. CV of StO2 and BFI over 10 s measurements, at 1 s time resolution, is shown as a function of the mean absolute value in the 10 s bin. Color codes represent the different N=11 piglets.

Tables (7)

Tables Icon

Table 1 Experimental parameters and tissue properties as defined for DCS and TRS data simulations, unless specified otherwise for a particular simulation.

Tables Icon

Table 2 CV and relative error in BFI estimation from simulated data when β is estimated from each correlation curve, at different intensity levels. Standard deviation over the ten sets of data generation shown in brackets.

Tables Icon

Table 3 Optical properties estimation (with standard deviation in brackets) and their CV for thirty TRS measurements on solid phantom at the three wavelengths (λ) employed in the BabyLux device.

Tables Icon

Table 4 BFI, with standard deviation in brackets, and its CV as obtained from thirty DCS measurements on a liquid phantom. Different CV of optical properties are assumed in the analysis, as indicated by the first column.

Tables Icon

Table 5 Optical properties and their CV obtained from 30 s measurement at 1 s time resolution on a piglet head. N=13 piglets were measured, median (minimum, maximum) values over the population are reported.

Tables Icon

Table 6 Haemodynamic properties and their CV obtained from 30 s measurement at 1 s time resolution on a piglet head. N=13 piglets were measured, median (minimum, maximum) values over the population are reported.

Tables Icon

Table 7 Molar absorption coefficients of HbO2, Hb [44] and absorption coefficient per volume fraction of water [45] at the wavelengths (λ) of interest.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R ( ρ , t ) = v 2 A ( 1 4 π D t ) 3 / 2 exp  ( ρ 2 4 D t μ a v t ) × [ exp  ( z + 2 4 D t ) exp  ( z 2 4 D t ) ] ,
G 1 ( τ ) = v 4 π D [ e K ( τ ) r + r + e K ( τ ) r r ]
g 2 ( τ ) = 1 + β | g 1 ( τ ) | 2
μ s ( λ ) = a ( λ λ 0 ) b
R model ( t ) = R ( t ) IRF ( t )   .
σ ( τ ) = T m t av [ β 2 ( 1 + e 2 Γ T m ) ( 1 + e 2 Γ τ + 2 m ( 1 e 2 Γ τ ) e 2 Γ τ ) ( 1 e 2 Γ T m ) + 2 n 1 β ( 1 + e 2 Γ τ ) + n 2 ( 1 + β e Γ τ ] 1 / 2   .
μ a ( λ ) = ϵ HbO 2 ( λ ) c HbO 2 + ϵ Hb ( λ ) c Hb + ϵ H 2 O   ' ( λ ) c H 2 O   ' ,

Metrics