Abstract

The degeneration of articular cartilage (AC) occurs in osteoarthritis (OA), which is a leading cause of pain and disability in middle-aged and older people. The early disease-related changes in cartilage extra-cellular matrix (ECM) start with depletion of proteoglycan (PG), leading to an increase in tissue hydration and permeability. These early compositional changes are small (<10%) and hence difficult to register with conventional non-invasive imaging technologies (magnetic resonance and ultrasound imaging). Here we apply Brillouin microscopy for detecting changes in the mechanical properties and composition of porcine AC. OA-like degradation is mimicked by enzymatic tissue digestion, and we compare Brillouin microscopy measurements against histological staining of PG depletion over varying digestion times and enzyme concentrations. The non-destructive nature of Brillouin imaging technology opens new avenues for creating minimally invasive arthroscopic devices for OA diagnostics and therapeutic monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy

Isaac O. Afara, Hayley Moody, Sanjleena Singh, Indira Prasadam, and Adekunle Oloyede
Biomed. Opt. Express 6(1) 144-154 (2015)

Nonlinear optical microscopy of early stage (ICRS Grade-I) osteoarthritic human cartilage

Rajesh Kumar, Kirsten M. Grønhaug, Catharina L. Davies, Jon O. Drogset, and Magnus B. Lilledahl
Biomed. Opt. Express 6(5) 1895-1903 (2015)

Polarized reflectance from articular cartilage depends upon superficial zone collagen network microstructure

R. N. Huynh, B. Pesante, G. Nehmetallah, and C. B. Raub
Biomed. Opt. Express 10(11) 5518-5534 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Mansour, “Biomechanics of cartilage,” Kinesiology: The Mechanics and Pathomechanics of Human Movement, 2 edition 5, 69–83 (LWW, 2013).
  2. M. B. Goldring, “Articular cartilage degradation in osteoarthritis,” HSS J. 8, 7–9 (2012).
    [Crossref]
  3. L. Hendren and P. Beeson, “A review of the differences between normal and osteoarthritis articular calrtilage in himan knee and ankle joins,” The foot 19, 171–176 (2009).
    [Crossref]
  4. S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
    [PubMed]
  5. J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
    [PubMed]
  6. P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
    [Crossref]
  7. M. A. Accardi, D. Dini, and P. M. Cann, “Experimental and numerical investigation of the behavior of articular cartilage under shear loading - interstitial fluid pressurization and lubrication mechanisms,” Tribol. Int. 44, 565–578 (2011).
    [Crossref]
  8. Wright. and et al., “Osteoarthritis Classification Scales: Interobserver Reliability and Arthroscopic Correlation,” J. Bone Jt. Surg. 96, 1145–1151 (2014).
    [Crossref]
  9. H. J. Braun and G. E. Gold, “Diagnosis of osteoarthritis: Imaging,” Bone 51, 278–288 (2012).
    [Crossref]
  10. M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
    [Crossref] [PubMed]
  11. K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
    [Crossref]
  12. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photon. 2, 39–43 (2008).
    [Crossref]
  13. F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
    [Crossref]
  14. S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135, 39–51 (1979).
    [Crossref] [PubMed]
  15. R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
    [Crossref] [PubMed]
  16. G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
    [Crossref] [PubMed]
  17. G. Antonacci and S. T. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Reports 6, 37217 (2016).
    [Crossref]
  18. P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
    [Crossref] [PubMed]
  19. I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
    [Crossref]
  20. G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
    [Crossref] [PubMed]
  21. G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
    [Crossref]
  22. G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
    [Crossref]
  23. G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
    [Crossref]
  24. J. R. Sandercock, “Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry-Perot interferometer,” J. Phys. E: J. Sci. Instrum. 9, 566–569 (1976).
    [Crossref]
  25. S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
    [Crossref]
  26. K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
    [Crossref] [PubMed]

2018 (1)

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

2017 (1)

I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

2016 (2)

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
[Crossref]

G. Antonacci and S. T. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Reports 6, 37217 (2016).
[Crossref]

2015 (3)

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
[Crossref]

2014 (3)

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Wright. and et al., “Osteoarthritis Classification Scales: Interobserver Reliability and Arthroscopic Correlation,” J. Bone Jt. Surg. 96, 1145–1151 (2014).
[Crossref]

2013 (2)

S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
[PubMed]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
[Crossref]

2012 (3)

M. B. Goldring, “Articular cartilage degradation in osteoarthritis,” HSS J. 8, 7–9 (2012).
[Crossref]

H. J. Braun and G. E. Gold, “Diagnosis of osteoarthritis: Imaging,” Bone 51, 278–288 (2012).
[Crossref]

K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
[Crossref] [PubMed]

2011 (1)

M. A. Accardi, D. Dini, and P. M. Cann, “Experimental and numerical investigation of the behavior of articular cartilage under shear loading - interstitial fluid pressurization and lubrication mechanisms,” Tribol. Int. 44, 565–578 (2011).
[Crossref]

2010 (1)

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

2009 (2)

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

L. Hendren and P. Beeson, “A review of the differences between normal and osteoarthritis articular calrtilage in himan knee and ankle joins,” The foot 19, 171–176 (2009).
[Crossref]

2008 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photon. 2, 39–43 (2008).
[Crossref]

2005 (1)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

1998 (1)

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

1979 (1)

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135, 39–51 (1979).
[Crossref] [PubMed]

1977 (1)

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
[Crossref] [PubMed]

1976 (1)

J. R. Sandercock, “Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry-Perot interferometer,” J. Phys. E: J. Sci. Instrum. 9, 566–569 (1976).
[Crossref]

Accardi, M. A.

M. A. Accardi, D. Dini, and P. M. Cann, “Experimental and numerical investigation of the behavior of articular cartilage under shear loading - interstitial fluid pressurization and lubrication mechanisms,” Tribol. Int. 44, 565–578 (2011).
[Crossref]

Aebi, U.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Antonacci, G.

G. Antonacci and S. T. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Reports 6, 37217 (2016).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
[Crossref]

Aszodi, A.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Baschong, W.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Beeson, P.

L. Hendren and P. Beeson, “A review of the differences between normal and osteoarthritis articular calrtilage in himan knee and ankle joins,” The foot 19, 171–176 (2009).
[Crossref]

Borges, P. D. N.

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

Braakman, S. T.

G. Antonacci and S. T. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Reports 6, 37217 (2016).
[Crossref]

Braun, H. J.

H. J. Braun and G. E. Gold, “Diagnosis of osteoarthritis: Imaging,” Bone 51, 278–288 (2012).
[Crossref]

Buckwalter, J. A.

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

Cann, P. M.

M. A. Accardi, D. Dini, and P. M. Cann, “Experimental and numerical investigation of the behavior of articular cartilage under shear loading - interstitial fluid pressurization and lubrication mechanisms,” Tribol. Int. 44, 565–578 (2011).
[Crossref]

Caponi, S.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Connon, C. J.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
[Crossref]

Cusack, S.

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135, 39–51 (1979).
[Crossref] [PubMed]

Daniels, A. U.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Day, R. E.

K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
[Crossref] [PubMed]

de Silva, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

Dini, D.

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

M. A. Accardi, D. Dini, and P. M. Cann, “Experimental and numerical investigation of the behavior of articular cartilage under shear loading - interstitial fluid pressurization and lubrication mechanisms,” Tribol. Int. 44, 565–578 (2011).
[Crossref]

Düggelin, M.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Dunlop, I. E.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

Edginton, R. S.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Fioretto, D.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Foreman, M. R.

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
[Crossref]

Forte, A. E.

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

Friederich, N. F.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Gold, G. E.

S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
[PubMed]

H. J. Braun and G. E. Gold, “Diagnosis of osteoarthritis: Imaging,” Bone 51, 278–288 (2012).
[Crossref]

Goldring, M. B.

M. B. Goldring, “Articular cartilage degradation in osteoarthritis,” HSS J. 8, 7–9 (2012).
[Crossref]

Gottardi, R.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Gouveia, R. M.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
[Crossref]

Green, E.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Grodzinsky, A. J.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Harley, R.

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
[Crossref] [PubMed]

He, Y. H.

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

Hendren, L.

L. Hendren and P. Beeson, “A review of the differences between normal and osteoarthritis articular calrtilage in himan knee and ankle joins,” The foot 19, 171–176 (2009).
[Crossref]

Huang, Y. P

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

Imer, R.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

James, D.

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
[Crossref] [PubMed]

Kabakova, I. V.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Kirk, T. B.

K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
[Crossref] [PubMed]

Kondiboyina, A.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

Koski, K. J.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

Krams, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

Lepert, G.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
[Crossref]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
[Crossref]

Madami, M.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Mankin, H. J.

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

Mansour, J.

J. Mansour, “Biomechanics of cartilage,” Kinesiology: The Mechanics and Pathomechanics of Human Movement, 2 edition 5, 69–83 (LWW, 2013).

Marenzana, M.

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

Martin, I.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Matzat, S. J.

S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
[PubMed]

Mehta, V. V.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

Miller, A.

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135, 39–51 (1979).
[Crossref] [PubMed]

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
[Crossref] [PubMed]

Miot, S.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Nia, H. T.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Oei, E. H. G.

S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
[PubMed]

Overby, D. R.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

Palombo, F.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Patel, K.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
[Crossref]

Pedrigi, R. M.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

Pollacheck, W. J.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Raducanu, A.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Raiteri, R.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Ruberti, J. W.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

Sandercock, J. R.

J. R. Sandercock, “Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry-Perot interferometer,” J. Phys. E: J. Sci. Instrum. 9, 566–569 (1976).
[Crossref]

Scarcelli, G.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photon. 2, 39–43 (2008).
[Crossref]

Sherwood, J. M.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

Staufer, U.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Stolz, M.

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Stone, N.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Török, P.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
[Crossref]

van Tiel, J.

S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
[PubMed]

Vincent, T. L.

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

Wang, K.

K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
[Crossref] [PubMed]

Wang, Q.

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

Wang, S. Z.

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

White, J. W.

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
[Crossref] [PubMed]

Winlove, C. P.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Wright.,

Wright. and et al., “Osteoarthritis Classification Scales: Interobserver Reliability and Arthroscopic Correlation,” J. Bone Jt. Surg. 96, 1145–1151 (2014).
[Crossref]

Wu, J.

K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
[Crossref] [PubMed]

Wu, P.-J.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

Xiang, Y. C.

I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

Yarger, J. L.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

Yun, S. H.

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photon. 2, 39–43 (2008).
[Crossref]

Zheng, Y. P.

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

Appl. Phys. Lett. (2)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107, 061102 (2015).
[Crossref]

Appl. Phys. Letts (1)

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Letts 103, 221105 (2013).
[Crossref]

Bone (1)

H. J. Braun and G. E. Gold, “Diagnosis of osteoarthritis: Imaging,” Bone 51, 278–288 (2012).
[Crossref]

Connect. Tissue Res. (1)

S. Z. Wang, Y. P Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependencies of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51, 36–47 (2010).
[Crossref]

Faraday Discuss. (1)

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 414–428 (2016).
[Crossref]

HSS J. (1)

M. B. Goldring, “Articular cartilage degradation in osteoarthritis,” HSS J. 8, 7–9 (2012).
[Crossref]

Instr. Course Lect. (1)

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

J. Bone Jt. Surg. (1)

Wright. and et al., “Osteoarthritis Classification Scales: Interobserver Reliability and Arthroscopic Correlation,” J. Bone Jt. Surg. 96, 1145–1151 (2014).
[Crossref]

J. Innov. Opt. Heal. Sci. (1)

I. V. Kabakova, Y. C. Xiang, C. Paterson, and P. Török, “Fibre-integrated Brillouin microspectroscopy: towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

J. Microsc. (1)

K. Wang, J. Wu, R. E. Day, and T. B. Kirk, “Utilizing confocal microscopy to measure refractive index of articular cartilage,” J. Microsc. 248, 281–291 (2012).
[Crossref] [PubMed]

J. Mol. Biol. (1)

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135, 39–51 (1979).
[Crossref] [PubMed]

J. Phys. E: J. Sci. Instrum. (1)

J. R. Sandercock, “Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry-Perot interferometer,” J. Phys. E: J. Sci. Instrum. 9, 566–569 (1976).
[Crossref]

J. R. Soc. Interface (1)

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12, 20150843 (2015).
[Crossref] [PubMed]

J. Royal Soc. Interface (1)

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. Royal Soc. Interface 11, 20140739 (2014).
[Crossref]

Nat. Methods (2)

G. Scarcelli, W. J. Pollacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–565 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A. U. Daniels, N. F. Friederich, A. Aszodi, and U. Aebi, “Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy,” Nat. Nanotechnol. 4, 186–192 (2009).
[Crossref] [PubMed]

Nat. Photon. (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photon. 2, 39–43 (2008).
[Crossref]

Nature (1)

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267, 285–287 (1977).
[Crossref] [PubMed]

Osteoarthr. cartilage (1)

P. D. N. Borges, A. E. Forte, T. L. Vincent, D. Dini, and M. Marenzana, “Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics,” Osteoarthr. cartilage 22, 1419–1428 (2014).
[Crossref]

Quant. Imaging Med. Surg. (1)

S. J. Matzat, J. van Tiel, G. E. Gold, and E. H. G. Oei, “Quantitative MRI techniques of cartilage composition,” Quant. Imaging Med. Surg. 3, 162–174 (2013).
[PubMed]

Sci. Reports (1)

G. Antonacci and S. T. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Reports 6, 37217 (2016).
[Crossref]

The foot (1)

L. Hendren and P. Beeson, “A review of the differences between normal and osteoarthritis articular calrtilage in himan knee and ankle joins,” The foot 19, 171–176 (2009).
[Crossref]

Tribol. Int. (1)

M. A. Accardi, D. Dini, and P. M. Cann, “Experimental and numerical investigation of the behavior of articular cartilage under shear loading - interstitial fluid pressurization and lubrication mechanisms,” Tribol. Int. 44, 565–578 (2011).
[Crossref]

Other (1)

J. Mansour, “Biomechanics of cartilage,” Kinesiology: The Mechanics and Pathomechanics of Human Movement, 2 edition 5, 69–83 (LWW, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Representation of articular cartilage composition at three stages of OA progression: (A) healthy cartilage, (B) early stage OA (C) late stage OA (image is adopted from [4]).
Fig. 2
Fig. 2 Brillouin microscopy scans in the direction perpendicular to the articular surface of cartilage (Z-scans) for: a) different step sizes of 2, 4 and 10 μm and b) different locations along the articular surface.
Fig. 3
Fig. 3 Brillouin microscopy of digested cartilage samples using a) 0.1 mg/ml and b) 1 mg/ml trypsin solution. Z-scan of the relative Brillouin frequency shift compared to the control sample is demonstrated in c) and the average relative shift measured inside the cartilage at Z>150 μm in d). Asterisks signify time points with statistically significant variation in the relative frequency shift (see Section 2.4).
Fig. 4
Fig. 4 Safranin O staining of articular cartilage reveals progressive GAG depletion after 1, 2, 3 and 4 hours of trypsin (1 mg/ml) digestion versus control sample (left).
Fig. 5
Fig. 5 Brillouin map of an articular cartilage section (140μm × 28μm), digested in a 1 mg/ml trypsin solution for 1 hour: a) full data and b) line representation with scans taken at 4 μm steps in Y-direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω = 2 n π λ M ρ ,
1 M = M l + 1 M s ,
Ω 2 Ω 0 2 = M M 0 0 .

Metrics