Abstract

The single cell eukaryotic protozoan Acanthamoeba castellanii exhibits a remarkable ability to switch from a vegetative trophozoite stage to a cystic form, in response to stressors. This phenotypic switch involves changes in gene expression and synthesis of the cell wall, which affects the ability of the organism to resist biocides and chemotherapeutic medicines. Given that encystation is a fundamental survival mechanism in the life cycle of A. castellanii, understanding of this process should have significant environmental and medical implications. In the present study, we investigated the mechanism of A. castellanii encystation using a novel phonon microscopy technique at the single cell level. Phonon microscopy is an emerging technique to image cells using laser-generated sub-optical wavelength phonons. This imaging modality can image with contrast underpinned by mechanical properties of cells at an optical or higher resolution. Our results show that the Brillouin frequency, a shift of the colour of light induced by phonons, evolves in three well defined frequency bands instead of a simple shift in frequency. These observations confirm previous results from literature and provide new insights into the capacity of A. castellanii cyst to react quickly in harsh environments.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

Fluorescent labeling of Acanthamoeba assessed in situ from corneal sectioned microscopy

Susana Marcos, Jose Requejo-Isidro, Jesus Merayo-Lloves, A. Ulises Acuña, Valentin Hornillos, Eugenia Carrillo, Pablo Pérez-Merino, Susana del Olmo-Aguado, Carmen del Aguila, Francisco Amat-Guerri, and Luis Rivas
Biomed. Opt. Express 3(10) 2489-2499 (2012)

Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development

Qiqi Sun, Yanfeng Li, Sicong He, Chenghao Situ, Zhenguo Wu, and Jianan Y. Qu
Biomed. Opt. Express 5(1) 158-166 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Cordingley, R. A. Willis, and C. L. Villemez, “Osmolarity is an independent trigger of Acanthamoeba castellanii differentiation,” J. Cell. Biochem. 61, 167–171 (1996).
    [Crossref] [PubMed]
  2. F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
    [Crossref]
  3. N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
    [Crossref]
  4. I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
    [Crossref]
  5. K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
    [Crossref]
  6. D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
    [Crossref] [PubMed]
  7. E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
    [Crossref]
  8. E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
    [Crossref]
  9. E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
    [Crossref]
  10. D. Lloyd, “Encystment in Acanthamoeba castellanii: A review,” Exp. Parasitol. 145, S20–S27 (2014).
    [Crossref] [PubMed]
  11. A. Anwar, N. A. Khan, and R. Siddiqui, “Combating Acanthamoeba spp. cysts: what are the options?” Parasites & Vectors 11, 26 (2018).
    [Crossref]
  12. M. P. Stratford and A. J. Griffiths, “Variations in the properties and morphology of cysts of Acanthamoeba castellanii,” J. Gen. Microbiol. 108, 33–37 (1978).
    [Crossref]
  13. T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
    [Crossref]
  14. M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
    [Crossref]
  15. S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
    [Crossref]
  16. F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
    [Crossref] [PubMed]
  17. F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
    [Crossref]
  18. R. A. Weisman, “Differentiation in Acanthamoeba castellanii,” Annu. Rev. Microbiol. 30, 189–219 (1976).
    [Crossref] [PubMed]
  19. N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).
  20. R. Dudley, S. Alsam, and N. A. Khan, “The role of proteases in the differentiation of Acanthamoeba castellanii,” FEMS Microbiol. Lett. 286, 9–15 (2008).
    [Crossref] [PubMed]
  21. C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
    [Crossref]
  22. C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
    [Crossref]
  23. F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).
  24. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump/Probe Spectroscopy by Asynchronous Optical Sampling,” Appl. Spectrosc. 41, 2–4 (1987).
    [Crossref]
  25. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
    [Crossref] [PubMed]
  26. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. photonics 2, 39–43 (2008).
    [Crossref]
  27. M. Z. Kiss, T. Varghese, and M. A. Kliewer, “Exvivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz,” Ultrasonics 51, 467–471 (2011).
    [Crossref]
  28. K. Miura and S. Yamamoto, “A scanning acoustic microscope discriminates cancer cells in fluid,” Sci. Reports 5, 15243 (2015).
    [Crossref]
  29. C. Li, N. Duric, and L. Huang, “Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,” in 2008 International Conference on BioMedical Engineering and Informatics, (IEEE, 2008), pp.708–712.
  30. P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
    [Crossref] [PubMed]
  31. N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
    [Crossref] [PubMed]

2018 (3)

A. Anwar, N. A. Khan, and R. Siddiqui, “Combating Acanthamoeba spp. cysts: what are the options?” Parasites & Vectors 11, 26 (2018).
[Crossref]

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

2017 (2)

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

2016 (1)

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

2015 (6)

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

K. Miura and S. Yamamoto, “A scanning acoustic microscope discriminates cancer cells in fluid,” Sci. Reports 5, 15243 (2015).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

2014 (1)

D. Lloyd, “Encystment in Acanthamoeba castellanii: A review,” Exp. Parasitol. 145, S20–S27 (2014).
[Crossref] [PubMed]

2012 (1)

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

2011 (2)

E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
[Crossref]

M. Z. Kiss, T. Varghese, and M. A. Kliewer, “Exvivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz,” Ultrasonics 51, 467–471 (2011).
[Crossref]

2008 (2)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. photonics 2, 39–43 (2008).
[Crossref]

R. Dudley, S. Alsam, and N. A. Khan, “The role of proteases in the differentiation of Acanthamoeba castellanii,” FEMS Microbiol. Lett. 286, 9–15 (2008).
[Crossref] [PubMed]

2007 (1)

E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
[Crossref]

2006 (1)

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

2002 (1)

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

2001 (1)

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

2000 (2)

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
[Crossref] [PubMed]

1996 (1)

J. S. Cordingley, R. A. Willis, and C. L. Villemez, “Osmolarity is an independent trigger of Acanthamoeba castellanii differentiation,” J. Cell. Biochem. 61, 167–171 (1996).
[Crossref] [PubMed]

1987 (1)

1986 (1)

C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

1984 (1)

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

1978 (1)

M. P. Stratford and A. J. Griffiths, “Variations in the properties and morphology of cysts of Acanthamoeba castellanii,” J. Gen. Microbiol. 108, 33–37 (1978).
[Crossref]

1976 (1)

R. A. Weisman, “Differentiation in Acanthamoeba castellanii,” Annu. Rev. Microbiol. 30, 189–219 (1976).
[Crossref] [PubMed]

Abi Ghanem, M.

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Alizadeh, H.

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

Alsam, S.

R. Dudley, S. Alsam, and N. A. Khan, “The role of proteases in the differentiation of Acanthamoeba castellanii,” FEMS Microbiol. Lett. 286, 9–15 (2008).
[Crossref] [PubMed]

Anwar, A.

A. Anwar, N. A. Khan, and R. Siddiqui, “Combating Acanthamoeba spp. cysts: what are the options?” Parasites & Vectors 11, 26 (2018).
[Crossref]

Audoin, B.

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Bahar, I.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Bhakdi, S.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Bohl, J.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Cao, Z.

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

Chung, D. I.

E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
[Crossref]

Chung, D.-I.

E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
[Crossref]

Clark, M.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Cordingley, J. S.

J. S. Cordingley, R. A. Willis, and C. L. Villemez, “Osmolarity is an independent trigger of Acanthamoeba castellanii differentiation,” J. Cell. Biochem. 61, 167–171 (1996).
[Crossref] [PubMed]

Danworaphong, S.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Dehoux, T.

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Dilhaire, S.

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Doan, N.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Dudley, R.

R. Dudley, S. Alsam, and N. A. Khan, “The role of proteases in the differentiation of Acanthamoeba castellanii,” FEMS Microbiol. Lett. 286, 9–15 (2008).
[Crossref] [PubMed]

Dunlop, I. E.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Duric, N.

C. Li, N. Duric, and L. Huang, “Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,” in 2008 International Conference on BioMedical Engineering and Informatics, (IEEE, 2008), pp.708–712.

Durrieu, M.-C.

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Elbaz, U.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Elsheikha, H.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

Elzinga, P. A.

Furr, J. R.

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
[Crossref] [PubMed]

Gelsomino, M.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Gohara, K.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Grahn, H.

C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

Griffiths, A. J.

M. P. Stratford and A. J. Griffiths, “Variations in the properties and morphology of cysts of Acanthamoeba castellanii,” J. Gen. Microbiol. 108, 33–37 (1978).
[Crossref]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Guillet, Y.

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Hann, A. C.

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

Hauser, J.

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Hong, Y.

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
[Crossref]

Hong, Y. C.

E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
[Crossref]

Howard, K.

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

Huang, L.

C. Li, N. Duric, and L. Huang, “Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,” in 2008 International Conference on BioMedical Engineering and Informatics, (IEEE, 2008), pp.708–712.

Jarroll, E. L.

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

Jian, Y.

Johnson, V.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Kabakova, I. V.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Kaiserman, I.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Khan, N. A.

A. Anwar, N. A. Khan, and R. Siddiqui, “Combating Acanthamoeba spp. cysts: what are the options?” Parasites & Vectors 11, 26 (2018).
[Crossref]

R. Dudley, S. Alsam, and N. A. Khan, “The role of proteases in the differentiation of Acanthamoeba castellanii,” FEMS Microbiol. Lett. 286, 9–15 (2008).
[Crossref] [PubMed]

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

Khunkitti, W.

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

King, G. B.

Kiss, M. Z.

M. Z. Kiss, T. Varghese, and M. A. Kliewer, “Exvivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz,” Ultrasonics 51, 467–471 (2011).
[Crossref]

Kliewer, M. A.

M. Z. Kiss, T. Varghese, and M. A. Kliewer, “Exvivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz,” Ultrasonics 51, 467–471 (2011).
[Crossref]

Kong, H. H.

E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
[Crossref]

Kong, H.-H.

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
[Crossref]

Lackner, K. J.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Laurendeau, N. M.

Lee, H.-A.

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

Leija, A. L.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

Li, C.

C. Li, N. Duric, and L. Huang, “Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,” in 2008 International Conference on BioMedical Engineering and Informatics, (IEEE, 2008), pp.708–712.

Liu, L.

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

Lloyd, D.

D. Lloyd, “Encystment in Acanthamoeba castellanii: A review,” Exp. Parasitol. 145, S20–S27 (2014).
[Crossref] [PubMed]

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
[Crossref] [PubMed]

Lytle, F. E.

Maris, H.

C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Marques, L.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Matsuda, O.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Matsumoto, Y.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Mayhew, E.

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

McAllum, P.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

McClellan, K.

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

Michel, R.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Miura, K.

K. Miura and S. Yamamoto, “A scanning acoustic microscope discriminates cancer cells in fluid,” Sci. Reports 5, 15243 (2015).
[Crossref]

Moon, E. K.

E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
[Crossref]

Moon, E.-K.

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
[Crossref]

Moradi, E.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Mueller, W.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Nagayama, M.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Nguyen, H. S.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Niederkorn, J.

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

Ohashi, T.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Otsuka, P. H.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Overby, D. R.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Paget, T. A.

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

Panjwani, N.

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Perez-Cota, F.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

Pérez-Cota, F.

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Petry, F.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Plawinski, L.

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Quan, F.-S.

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

Rampnoux, J.-M.

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Rootman, D. S.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Rozansky, G.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Ruberti, J. W.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Russell, A. D.

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
[Crossref] [PubMed]

Saux, G. Le

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

Scarcelli, G.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. photonics 2, 39–43 (2008).
[Crossref]

Scheid, P.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Shabani, S.

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

Sherwood, J. M.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Siddiqui, R.

A. Anwar, N. A. Khan, and R. Siddiqui, “Combating Acanthamoeba spp. cysts: what are the options?” Parasites & Vectors 11, 26 (2018).
[Crossref]

Slomovic, A. R.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Smith, R. J.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Sottile, V.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

Srinivasan, S.

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Strait, J.

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Stratford, M. P.

M. P. Stratford and A. J. Griffiths, “Variations in the properties and morphology of cysts of Acanthamoeba castellanii,” J. Gen. Microbiol. 108, 33–37 (1978).
[Crossref]

Symonds, M. E.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

Tauc, J.

C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Thomsen, C.

C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Tomoda, M.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Török, P.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Torzewski, M.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Turner, N. A.

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
[Crossref] [PubMed]

Vardeny, Z.

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Varghese, T.

M. Z. Kiss, T. Varghese, and M. A. Kliewer, “Exvivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz,” Ultrasonics 51, 467–471 (2011).
[Crossref]

Velickovic, K.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

Villemez, C. L.

J. S. Cordingley, R. A. Willis, and C. L. Villemez, “Osmolarity is an independent trigger of Acanthamoeba castellanii differentiation,” J. Cell. Biochem. 61, 167–171 (1996).
[Crossref] [PubMed]

Walochnik, J.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Watanabe, H.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Webb, K. F.

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Weisman, R. A.

R. A. Weisman, “Differentiation in Acanthamoeba castellanii,” Annu. Rev. Microbiol. 30, 189–219 (1976).
[Crossref] [PubMed]

Werhahn, K. J.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Wilhelm-Schwenkmezger, T.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Willis, R. A.

J. S. Cordingley, R. A. Willis, and C. L. Villemez, “Osmolarity is an independent trigger of Acanthamoeba castellanii differentiation,” J. Cell. Biochem. 61, 167–171 (1996).
[Crossref] [PubMed]

Wright, O. B.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Wu, P.-J.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Yamamoto, S.

K. Miura and S. Yamamoto, “A scanning acoustic microscope discriminates cancer cells in fluid,” Sci. Reports 5, 15243 (2015).
[Crossref]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. photonics 2, 39–43 (2008).
[Crossref]

Zöller, L.

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

Zouani, O. F.

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

Annu. Rev. Microbiol. (1)

R. A. Weisman, “Differentiation in Acanthamoeba castellanii,” Annu. Rev. Microbiol. 30, 189–219 (1976).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Appl. Spectrosc. (1)

Can. J. Ophthalmol. / J. Can. d’Ophtalmologie (1)

I. Kaiserman, I. Bahar, P. McAllum, S. Srinivasan, U. Elbaz, A. R. Slomovic, and D. S. Rootman, “Prognostic factors in Acanthamoeba keratitis,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie 47, 312–317 (2012).
[Crossref]

Exp. eye research (1)

K. McClellan, K. Howard, E. Mayhew, J. Niederkorn, and H. Alizadeh, “Adaptive immune responses to Acanthamoeba cysts,” Exp. eye research 75, 285–293 (2002).
[Crossref]

Exp. Parasitol. (1)

D. Lloyd, “Encystment in Acanthamoeba castellanii: A review,” Exp. Parasitol. 145, S20–S27 (2014).
[Crossref] [PubMed]

Exp. parasitology (1)

E.-K. Moon, D.-I. Chung, Y. Hong, and H.-H. Kong, “Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs,” Exp. parasitology 127, 811–816 (2011).
[Crossref]

FEMS Microbiol. Lett. (1)

R. Dudley, S. Alsam, and N. A. Khan, “The role of proteases in the differentiation of Acanthamoeba castellanii,” FEMS Microbiol. Lett. 286, 9–15 (2008).
[Crossref] [PubMed]

Imaging Microsc. (1)

F. Perez-Cota, R. J. Smith, E. Moradi, A. L. Leija, K. Velickovic, L. Marques, K. F. Webb, M. E. Symonds, V. Sottile, H. Elsheikha, and M. Clark, “Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging,” Imaging Microsc. 3, 46556 (2017).

J. Antimicrob. Chemother. (1)

N. A. Turner, A. D. Russell, J. R. Furr, and D. Lloyd, “Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii,” J. Antimicrob. Chemother. 46, 27–34 (2000).
[Crossref] [PubMed]

J. Cell. Biochem. (1)

J. S. Cordingley, R. A. Willis, and C. L. Villemez, “Osmolarity is an independent trigger of Acanthamoeba castellanii differentiation,” J. Cell. Biochem. 61, 167–171 (1996).
[Crossref] [PubMed]

J. clinical microbiology (2)

F. Petry, M. Torzewski, J. Bohl, T. Wilhelm-Schwenkmezger, P. Scheid, J. Walochnik, R. Michel, L. Zöller, K. J. Werhahn, S. Bhakdi, and K. J. Lackner, “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” J. clinical microbiology 44, 1903–1904 (2006).
[Crossref]

N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” J. clinical microbiology 38, 2858–2861 (2000).

J. Gen. Microbiol. (1)

M. P. Stratford and A. J. Griffiths, “Variations in the properties and morphology of cysts of Acanthamoeba castellanii,” J. Gen. Microbiol. 108, 33–37 (1978).
[Crossref]

Nat. Methods (2)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15, 561–562 (2018).
[Crossref] [PubMed]

Nat. photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. photonics 2, 39–43 (2008).
[Crossref]

Opt. Commun. (1)

C. Thomsen, H. Grahn, H. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

Parasites & Vectors (1)

A. Anwar, N. A. Khan, and R. Siddiqui, “Combating Acanthamoeba spp. cysts: what are the options?” Parasites & Vectors 11, 26 (2018).
[Crossref]

Phys. Rev. Lett. (1)

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Rev. Sci. Instruments (1)

M. Abi Ghanem, T. Dehoux, L. Liu, G. Le Saux, L. Plawinski, M.-C. Durrieu, and B. Audoin, “Opto-acoustic microscopy reveals adhesion mechanics of single cells,” Rev. Sci. Instruments 89, 014901 (2018).
[Crossref]

Sci. Reports (2)

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Reports 6, 39326 (2016).
[Crossref]

T. Dehoux, M. Abi Ghanem, O. F. Zouani, J.-M. Rampnoux, Y. Guillet, S. Dilhaire, M.-C. Durrieu, and B. Audoin, “All-optical broadband ultrasonography of single cells,” Sci. reports 5, 8650 (2015).
[Crossref]

K. Miura and S. Yamamoto, “A scanning acoustic microscope discriminates cancer cells in fluid,” Sci. Reports 5, 15243 (2015).
[Crossref]

Surg. neurology international (1)

N. Doan, G. Rozansky, H. S. Nguyen, M. Gelsomino, S. Shabani, W. Mueller, and V. Johnson, “Granulomatous amebic encephalitis following hematopoietic stem cell transplantation,” Surg. neurology international 6, S459–S562 (2015).
[Crossref]

The J. eukaryotic microbiology (1)

D. Lloyd, N. A. Turner, W. Khunkitti, A. C. Hann, J. R. Furr, and A. D. Russell, “Encystation in Acanthamoeba castellanii: development of biocide resistance,” The J. eukaryotic microbiology 48, 11–16 (2001).
[Crossref] [PubMed]

The Korean journal of parasitology (2)

E. K. Moon, D. I. Chung, Y. C. Hong, and H. H. Kong, “Differentially expressed genes of Acanthamoeba castellanii during encystation,” The Korean journal of parasitology 45, 283–285 (2007).
[Crossref]

E.-K. Moon, Y. Hong, H.-A. Lee, F.-S. Quan, and H.-H. Kong, “DNA methylation of gene expression in Acanthamoeba castellanii encystation,” The Korean journal of parasitology 55, 115–120 (2017).
[Crossref]

Ultrasonics (1)

M. Z. Kiss, T. Varghese, and M. A. Kliewer, “Exvivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz,” Ultrasonics 51, 467–471 (2011).
[Crossref]

Other (1)

C. Li, N. Duric, and L. Huang, “Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,” in 2008 International Conference on BioMedical Engineering and Informatics, (IEEE, 2008), pp.708–712.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Phonon microscope. a) Experimental setup. Menlo C-fibre ASOPS laser beams are directed to the sample using a microscope body. The transmitted light is collected using an overhead optical assembly and captured by an oscilloscope. b) The opto-acoustic transducer (OAT) is made of gold and indium tin oxide layers and is optimised for absorption of pump light and transmission of probe light. The generated phonon field interacts with the probe light producing a TRBS signal.
Fig. 2
Fig. 2 Brillouin frequency maps of Acanthamoeba castellanii at different time points. Images are presented in groups of four with optical images in gray scale, frequency images (scale bars: 5μm, same scale for all) in colour, histograms of the measured frequencies and composites. The histograms come only from the area of interest to remove contributions from the medium. Image groups a)-f) represent hours 0, 1,3, 5, 24 and 48 respectively. As time advances, the Brillouin frequency measured from the encysting amoebas increases. For the histograms, more than one frequency distribution appears and at 24Hr three distributions are clearly observable. Red, blue and green lines represent fits of the data to normal distributions. Composites were produced by identifying the distribution of origin for each pixel to assigning them a different colour. Composites represent the spatial location of each frequency distribution with red, green and blue corresponding to 5.4, 5.8 and 6.2 GHz respectively.
Fig. 3
Fig. 3 Progression of the amplitude Brillouin frequency distributions against time. The three different distributions have progressing amplitudes against time in different manner. The 5.4, 5.8 and 6.2GHz distributions are shown in (a),(b) and (c) respectively. The stars represent experimental data from individual organisms while the solid lines represent a fit of the data to an exponential decay (5.4 and 5.8GHz) or logistic function (6.2GHz). The dotted lines represent the confidence intervals of the fits. (d) Shows the combination of all distribution revealing complex dynamics.
Fig. 4
Fig. 4 Progression of the amplitude of the cellulose signal against time during encystation. The trace in (a) shows the measured intensity of the cellulose signal. Here the stars represent experimental measurement of the fluorescence intensity while the solid lines represent a fit of the data to an exponential curve. The dotted lines represent the confidence intervals of the fit. Cellulose is observed to increase exponentially. Examples of different time points are presented in pairs with phase contrast images in gray scale and fluorescence images in colour. (a-d) Represent hours 3, 5 and 24 respectively.
Fig. 5
Fig. 5 Comparison between the 5.8GHz distribution and CW signal.(a) 5.8GHz signal as seen in figure 3b. (b) CW signal as seen in figure 4a. Both signals increase between 3-10Hrs. This suggests that the 5.8GHz distribution arises from the synthesis of cellulose.

Metrics