Abstract

Raman spectroscopy of blood offers significant potential for label-free diagnostics of disease. However, current techniques are limited by the use of low laser power to avoid photodegradation of blood; this translates to a low signal to noise ratio in the Raman spectra. We developed a novel flow cell based Raman spectroscopy technique that provides reproducible Raman spectra with a high signal to noise ratio and low data acquisition time while ensuring a short dwell time in the laser spot to avoid photodamage in blood lysates. We show that our novel setup is capable of detecting minute changes in blood lysate spectral features from natural aging. Moreover, we demonstrate that by rigorously controlling the experimental conditions, the aging effect due to natural oxidation does not confound the Raman spectral measurements and that blood treated with hydrogen peroxide to induce oxidative stress can be discriminated from normal blood with a high accuracy of greater than 90% demonstrating potential for use in a clinical setting.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon microscopy imaging of oxidative stress in human living erythrocytes

Gohar Tsakanova, Elina Arakelova, Violetta Ayvazyan, Anna Ayvazyan, Stepan Tatikyan, Rouben Aroutiounian, Yeva Dalyan, Samvel Haroutiunian, Vasili Tsakanov, and Arsen Arakelyan
Biomed. Opt. Express 8(12) 5834-5846 (2017)

Ocular anterior chamber blood cell population differentiation using spectroscopic optical coherence tomography

Ruobing Qian, Wei-feng Huang, Ryan P. McNabb, Kevin C. Zhou, Qing H. Liu, Anthony N. Kuo, and Joseph A. Izatt
Biomed. Opt. Express 10(7) 3281-3300 (2019)

Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup

Paweł Ossowski, Anna Raiter-Smiljanic, Anna Szkulmowska, Danuta Bukowska, Małgorzata Wiese, Ladislav Derzsi, Andrzej Eljaszewicz, Piotr Garstecki, and Maciej Wojtkowski
Opt. Express 23(21) 27724-27738 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
    [Crossref] [PubMed]
  2. K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
    [Crossref] [PubMed]
  3. M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
    [Crossref] [PubMed]
  4. A. J. Berger, T. W. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38(13), 2916–2926 (1999).
    [Crossref] [PubMed]
  5. C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
    [Crossref] [PubMed]
  6. K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396(1), 525–534 (2010).
    [Crossref] [PubMed]
  7. A. M. K. Enejder, T. W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood Analysis by Raman Spectroscopy,” Opt. Lett. 27(22), 2004–2006 (2002).
    [Crossref] [PubMed]
  8. J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
    [Crossref] [PubMed]
  9. A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
    [Crossref] [PubMed]
  10. A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
    [Crossref] [PubMed]
  11. D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
    [Crossref] [PubMed]
  12. A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
    [Crossref] [PubMed]
  13. J. Lin, L. Shao, S. Qiu, X. Huang, M. Liu, Z. Zheng, D. Lin, Y. Xu, Z. Li, Y. Lin, R. Chen, and S. Feng, “Application of a near-infrared laser tweezers Raman spectroscopy system for label-free analysis and differentiation of diabetic red blood cells,” Biomed. Opt. Express 9(3), 984–993 (2018).
    [Crossref] [PubMed]
  14. X. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and Selective Chem/ Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS),” Vib. Spectrosc. 42(1), 2–8 (2006).
    [Crossref]
  15. W. R. Premasiri, J. C. Lee, and L. D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” J. Phys. Chem. B 116(31), 9376–9386 (2012).
    [Crossref] [PubMed]
  16. K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
    [Crossref] [PubMed]
  17. A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
    [Crossref] [PubMed]
  18. F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
    [Crossref] [PubMed]
  19. R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
    [Crossref] [PubMed]
  20. B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
    [Crossref] [PubMed]
  21. P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
    [Crossref] [PubMed]
  22. E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
    [Crossref] [PubMed]
  23. L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
    [Crossref]
  24. C. H. Allen, “Raman Spectroscopy of Human Lens Epithelial Cells Exposed to a Low-dose Range of Ionizing Radiation,” MSc Thesis, Carleton University, Ottawa (2018).
    [Crossref]
  25. P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
    [Crossref]
  26. M. Morhác and V. Matousek, “Peak Clipping Algorithms for Background Estimation in Spectroscopic Data,” Appl. Spectrosc. 62(1), 91–106 (2008).
    [Crossref] [PubMed]
  27. P. Nelson, Biological Physics. Energy, Information, Life (Freeman and Company, 2014), Chap. 5.
  28. K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
    [Crossref] [PubMed]
  29. M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
    [Crossref]
  30. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
    [Crossref] [PubMed]
  31. M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
    [Crossref]
  32. S. Barkur, D. Mathur, and S. Chidangil, “A laser Raman tweezers study of eryptosis,” J. Raman Spectrosc. 49(7), 1155–1164 (2018).
    [Crossref]
  33. B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
    [Crossref] [PubMed]
  34. K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
    [Crossref] [PubMed]
  35. B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
    [Crossref]
  36. R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
    [Crossref]
  37. S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
    [Crossref]
  38. S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
    [Crossref] [PubMed]
  39. H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
    [PubMed]

2018 (2)

2017 (3)

C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
[Crossref] [PubMed]

S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
[Crossref] [PubMed]

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

2016 (4)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

2015 (1)

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

2014 (5)

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
[Crossref] [PubMed]

P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
[Crossref] [PubMed]

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

2013 (2)

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
[Crossref] [PubMed]

2012 (2)

W. R. Premasiri, J. C. Lee, and L. D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” J. Phys. Chem. B 116(31), 9376–9386 (2012).
[Crossref] [PubMed]

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

2011 (2)

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

2010 (6)

M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
[Crossref]

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396(1), 525–534 (2010).
[Crossref] [PubMed]

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

2009 (2)

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

2006 (1)

X. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and Selective Chem/ Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS),” Vib. Spectrosc. 42(1), 2–8 (2006).
[Crossref]

2005 (1)

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[Crossref] [PubMed]

2002 (1)

2001 (1)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

2000 (1)

P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
[Crossref]

1999 (1)

Ahlawat, S.

S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
[Crossref] [PubMed]

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

Ahmad, A.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Armstrong, J.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

Ashton, K.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Ashton, L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Atkins, C. G.

C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
[Crossref] [PubMed]

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Avila, K.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

Avila, M.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

Baker, M. J.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
[Crossref] [PubMed]

Bankapur, A.

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Barkley, D.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

Barkur, S.

S. Barkur, D. Mathur, and S. Chidangil, “A laser Raman tweezers study of eryptosis,” J. Raman Spectrosc. 49(7), 1155–1164 (2018).
[Crossref]

Berger, A. J.

Bird, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Blades, M. W.

C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
[Crossref] [PubMed]

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Bonifacio, A.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Bonnier, F.

F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
[Crossref] [PubMed]

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Bruining, H.

P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
[Crossref]

Bryant, J.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

Buckley, K.

C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
[Crossref] [PubMed]

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Bussjager, R. J.

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

Butler, H. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Byrne, H. J.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
[Crossref] [PubMed]

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Caspers, P.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
[Crossref]

Cervo, S.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Chaiken, J.

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

Chan, J. W.

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

Chen, D.

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Chen, R.

Chidangil, S.

S. Barkur, D. Mathur, and S. Chidangil, “A laser Raman tweezers study of eryptosis,” J. Raman Spectrosc. 49(7), 1155–1164 (2018).
[Crossref]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Cinque, G.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Clemens, G.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Colombatti, A.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Cooper, N.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Curtin, J. F.

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Curtis, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Dalla Marta, S.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Dasgupta, R.

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

Davis, C.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Davis, L.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[Crossref] [PubMed]

Dawson, T. P.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

de Araujo, R. E.

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

de Lozar, A.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

de Oliveira, M. A. S.

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

DelMonaco, A.

P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
[Crossref] [PubMed]

Deng, B.

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

Desmulliez, M. P. Y.

M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
[Crossref]

Devine, D. V.

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Dhariwal, R.

M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
[Crossref]

Dorney, J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Dunne, M.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

Eapen, L.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Enejder, A. M. K.

Esmonde-White, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Feld, M. S.

Feng, S.

Finn, M.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

Fisher, S. E.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Fullwood, L. M.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Fullwood, N. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gardner, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Geier, R.

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

Goodisman, J.

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

Griffiths, D.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Gupta, P. K.

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

Hammer, L.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[Crossref] [PubMed]

Harris, A. T.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

High, A. S.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Hof, B.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

Horowitz, G.

Horowitz, G. L.

Howe, O.

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Huang, X.

Hughes, C.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Hunter, M.

Hussain, S. R.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Itzkan, I.

Jouvet, L.

M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
[Crossref]

Kendall, C.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Kersaudy-Kerhoas, M.

M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
[Crossref]

Kirkham, J.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Knief, P.

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Knorr, F.

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Kong, K.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Koo, T. W.

Koo, T. W. W.

Krishna, C. M.

A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
[Crossref] [PubMed]

Kumar, N.

S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
[Crossref] [PubMed]

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

Kumar Gupta, P.

S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
[Crossref] [PubMed]

Lea, R. W.

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Lednev, I. K.

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396(1), 525–534 (2010).
[Crossref] [PubMed]

Lee, J. C.

W. R. Premasiri, J. C. Lee, and L. D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” J. Phys. Chem. B 116(31), 9376–9386 (2012).
[Crossref] [PubMed]

Lemler, P.

P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
[Crossref] [PubMed]

Lewis-Clark, E.

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

Li, Z.

Lin, D.

Lin, J.

Lin, Y.

Liu, M.

Liu, R.

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

Lones, M. A.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Lovergne, L.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Lucassen, G.

P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
[Crossref]

Lukaszewski, R. A.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Lungari, A.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Lyng, F. M.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Maguire, A.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

Mamgain, H.

A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
[Crossref] [PubMed]

Martin, F. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Martin-Hirsch, D. P.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Mathur, D.

S. Barkur, D. Mathur, and S. Chidangil, “A laser Raman tweezers study of eryptosis,” J. Raman Spectrosc. 49(7), 1155–1164 (2018).
[Crossref]

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Matousek, V.

Matthews, D. L.

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

McAinsh, M. R.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

McNaughton, D.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[Crossref] [PubMed]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Meade, A. D.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Medipally, D. K. R.

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

Moradi, H.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Morhác, M.

Moxey, D.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

Murugkar, S.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Needham, C. J.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Niedbala, G.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Notingher, I.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Nyiri, B.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Oh, J.

Pandiancherri, S.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Petitjean, F.

F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
[Crossref] [PubMed]

Poon, K. W. C.

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Premasiri, W. R.

P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
[Crossref] [PubMed]

W. R. Premasiri, J. C. Lee, and L. D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” J. Phys. Chem. B 116(31), 9376–9386 (2012).
[Crossref] [PubMed]

Puppels, G.

P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
[Crossref]

Puppels, G. J.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Qiu, S.

Sahu, A.

A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
[Crossref] [PubMed]

Santhosh, C.

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

Sasic, S.

Satake, N.

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

Sawant, S.

A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
[Crossref] [PubMed]

Schulze, H. G.

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Sergo, V.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Shah, N. C.

X. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and Selective Chem/ Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS),” Vib. Spectrosc. 42(1), 2–8 (2006).
[Crossref]

Shaheen, G.

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

Shao, L.

Shepherdson, D.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Smith, D. A.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Smith, S. L.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Smith, Z. J.

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Sockalingum, G. D.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Spizzo, R.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Steffan, A.

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

Stone, N.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Tait, B.

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Thiéfin, G.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Turner, R. F. B.

C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman Spectroscopy of Blood and Blood Components,” Appl. Spectrosc. 71(5), 767–793 (2017).
[Crossref] [PubMed]

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

Untereiner, V.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Uppal, A.

S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
[Crossref] [PubMed]

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

Valiathan, M.

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

X. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and Selective Chem/ Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS),” Vib. Spectrosc. 42(1), 2–8 (2006).
[Crossref]

Vanderhyden, B.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Vaughan, J.

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Verma, R. S.

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

Virkler, K.

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396(1), 525–534 (2010).
[Crossref] [PubMed]

Vuong, N. H.

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

Wachsmann-Hogiu, S.

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Walsh, M. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Wood, B. R.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[Crossref] [PubMed]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Wright, C.

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

Xu, Y.

Yang, X. B.

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

Zachariah, E.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and Selective Chem/ Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS),” Vib. Spectrosc. 42(1), 2–8 (2006).
[Crossref]

Zheng, L.

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

Zheng, Z.

Ziegler, L. D.

P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
[Crossref] [PubMed]

W. R. Premasiri, J. C. Lee, and L. D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” J. Phys. Chem. B 116(31), 9376–9386 (2012).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (4)

A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Anal. Bioanal. Chem. 406(9-10), 2355–2365 (2014).
[Crossref] [PubMed]

P. Lemler, W. R. Premasiri, A. DelMonaco, and L. D. Ziegler, “NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation,” Anal. Bioanal. Chem. 406(1), 193–200 (2014).
[Crossref] [PubMed]

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman Spectroscopy of Red Blood Cells Using Near-Infrared Laser Excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396(1), 525–534 (2010).
[Crossref] [PubMed]

Anal. Methods (1)

L. M. Fullwood, G. Clemens, D. Griffiths, K. Ashton, T. P. Dawson, R. W. Lea, C. Davis, F. Bonnier, H. J. Byrne, and M. J. Baker, “Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin,” Anal. Methods 6(12), 3948–3961 (2014).
[Crossref]

Analyst (Lond.) (4)

A. Sahu, S. Sawant, H. Mamgain, and C. M. Krishna, “Raman spectroscopy of serum: an exploratory study for detection of oral cancers,” Analyst (Lond.) 138(14), 4161–4174 (2013).
[Crossref] [PubMed]

D. K. R. Medipally, A. Maguire, J. Bryant, J. Armstrong, M. Dunne, M. Finn, F. M. Lyng, and A. D. Meade, “Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients,” Analyst (Lond.) 142(8), 1216–1226 (2017).
[Crossref] [PubMed]

K. Buckley, C. G. Atkins, D. Chen, H. G. Schulze, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst (Lond.) 141(5), 1678–1685 (2016).
[Crossref] [PubMed]

K. W. C. Poon, F. M. Lyng, P. Knief, O. Howe, A. D. Meade, J. F. Curtin, H. J. Byrne, and J. Vaughan, “Quantitative reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma using Raman Spectroscopy,” Analyst (Lond.) 137(8), 1807–1814 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Liu, L. Zheng, D. L. Matthews, N. Satake, and J. W. Chan, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99(4), 043702 (2011).
[Crossref]

S. Ahlawat, N. Kumar, R. Dasgupta, R. S. Verma, A. Uppal, and P. K. Gupta, “Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells,” Appl. Phys. Lett. 103(18), 183704 (2013).
[Crossref]

M. A. S. de Oliveira, Z. J. Smith, F. Knorr, R. E. de Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Appl. Spectrosc. (2)

Biochim. Biophys. Acta (1)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Soc. Rev. (1)

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Head Neck Oncol. (1)

A. T. Harris, A. Lungari, C. J. Needham, S. L. Smith, M. A. Lones, S. E. Fisher, X. B. Yang, N. Cooper, J. Kirkham, D. A. Smith, D. P. Martin-Hirsch, and A. S. High, “Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample,” Head Neck Oncol. 1(1), 34 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

J. Chaiken, J. Goodisman, B. Deng, R. J. Bussjager, and G. Shaheen, “Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds,” J. Biomed. Opt. 14(5), 050505 (2009).
[Crossref] [PubMed]

R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, and P. K. Gupta, “Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers,” J. Biomed. Opt. 15(5), 055009 (2010).
[Crossref] [PubMed]

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[Crossref] [PubMed]

J. Biophotonics (3)

F. Bonnier, F. Petitjean, M. J. Baker, and H. J. Byrne, “Improved protocols for vibrational spectroscopic analysis of body fluids,” J. Biophotonics 7(3-4), 167–179 (2014).
[Crossref] [PubMed]

S. Ahlawat, N. Kumar, A. Uppal, and P. Kumar Gupta, “Visible Raman excitation laser induced power and exposure dependent effects in red blood cells,” J. Biophotonics 10(3), 415–422 (2017).
[Crossref] [PubMed]

H. Moradi, A. Ahmad, D. Shepherdson, N. H. Vuong, G. Niedbala, L. Eapen, B. Vanderhyden, B. Nyiri, and S. Murugkar, “Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells,” J. Biophotonics 10, 1327–1334 (2016).
[PubMed]

J. Photochem. Photobiol. B (1)

E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, and D. Mathur, “Probing oxidative stress in single erythrocytes with Raman Tweezers,” J. Photochem. Photobiol. B 100(3), 113–116 (2010).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

W. R. Premasiri, J. C. Lee, and L. D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” J. Phys. Chem. B 116(31), 9376–9386 (2012).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

S. Barkur, D. Mathur, and S. Chidangil, “A laser Raman tweezers study of eryptosis,” J. Raman Spectrosc. 49(7), 1155–1164 (2018).
[Crossref]

P. Caspers, G. Lucassen, H. Bruining, and G. Puppels, “Automated depth scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31(8-9), 813–818 (2000).
[Crossref]

Microfluid. Nanofluidics (1)

M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Y. Desmulliez, and L. Jouvet, “Hydrodynamic blood plasma separation into microfluidic channels,” Microfluid. Nanofluidics 8(1), 105–114 (2010).
[Crossref]

Nat. Protoc. (1)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

PLoS One (1)

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Deng, C. Wright, E. Lewis-Clark, G. Shaheen, R. Geier, and J. Chaiken, “Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo,” Proc. SPIE 7560, 75600 (2010).
[Crossref]

Science (1)

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333(6039), 192–196 (2011).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

X. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and Selective Chem/ Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS),” Vib. Spectrosc. 42(1), 2–8 (2006).
[Crossref]

Other (2)

C. H. Allen, “Raman Spectroscopy of Human Lens Epithelial Cells Exposed to a Low-dose Range of Ionizing Radiation,” MSc Thesis, Carleton University, Ottawa (2018).
[Crossref]

P. Nelson, Biological Physics. Energy, Information, Life (Freeman and Company, 2014), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the Raman spectroscopy probe consisting of Lenses L1 – L5; BPF: 785 nm bandpass filter; EF1 and EF2: > 800 nm edge filters to transmit the Raman light only, DM1 and DM2 are dichroic mirrors (b) Close-up photograph of the water-immersion objective to excite and collect the laser and Raman-scattered light respectively from the blood sample in the flow cell.
Fig. 2
Fig. 2 (a) Raman spectra of blood at varying depths inside the flow cell. (b) Parabolic velocity distribution of 5 µm polystyrene beads in water flowing through the quartz capillary tube, obtained by increasing the depth of the laser focal spot into the tube.
Fig. 3
Fig. 3 Comparison of the Raman spectra from the first and the last time series separated by 160 minutes. Mean intensity along with a 95% confidence interval of the Raman spectra in the first (red) and last (blue) time series for (a) static blood and (b) flowed blood. Background-subtracted Raman spectra for the first and last time series separated by 160 minutes for (c) static blood and (d) flowed blood. Difference spectrum between the first and last time series for (e) static blood and (f) flowed blood.
Fig. 4
Fig. 4 Plot of the mean intensity and along with a 95% confidence interval of the first 10 (red), middle 10 (blue) and last 10 (green) Raman spectra in the first time series for (a) static blood and (b) flowed blood. (c) and (d) Background-corrected Raman spectra showing the mean intensity and standard deviation of the first 10 (red) and last 10 (blue) spectra of all 14 time series for (c) static blood and (d) flowed blood. The mean of (n = 14 time series) difference spectra between the mean of the first 10 spectra and the last 10 spectra for each time series, along with 95% confidence interval, for static (e) and flowed blood (f).
Fig. 5
Fig. 5 (a) Mean of the Raman spectra along with the 95% confidence interval corresponding to control blood (n = 4455) and blood treated with 20 mM (n = 1485) and 100 mM concentration (n = 1485) of hydrogen peroxide. (b) Tukey style box plots showing the variation in the ratio of the intensity of Raman bands at: 1212 cm−1 and 1224 cm−1; 1340 cm−1 and 1375 cm−1; 1549 and 1582 cm−1; and 1604 cm−1 and 1637 cm−1 for each dose group. Black boxes consist of all spectra for a given dose, while grey boxes are all spectra for a given day for a given dose. Outliers have been left out for clarity and * indicates statistically significant differences (p < 0.05) between the median ratios for the dosed group relative to the control group using all spectra. (c) PCA scatter plot for a Raman data set of three control samples (Control-1,2,3) and the two dosed samples (Dose-1 and Dose-2 correspond to 20 mM and 100mM concentration of hydrogen peroxide). The order of the plot legend reflects the order of consecutive measurements.
Fig. 6
Fig. 6 Raman spectra of flowed blood at high (165 kWcm−2), medium (83 kWcm−2), and low (20 kWcm−2) laser power densities.

Tables (1)

Tables Icon

Table 1 Tentative molecular assignments for the main peaks observed in the Raman spectra of lysed human blood [12,15,29]. Abbreviations: (ν) & (δ) in-plane modes, (γ) out-of-plane modes, (str) stretch, (p) protein, (Phe) and phenylalanine.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v( r )= v 0  ( 1 ( 2r d ) 2 )
Q= 1 8 π d 2 v 0
v( r )= v 0 ( 1 ( 2( R d focal ) d ) 2 )=12 μm/ t dwell

Metrics