Abstract

Application of compressional optical coherence elastography (OCE) for delineation of tumor and peri-tumoral tissue with simultaneous assessment of morphological/molecular subtypes of breast cancer is reported. The approach is based on the ability of OCE to quantitatively visualize stiffness of studied samples and then to perform a kind of OCE-based biopsy by analyzing elastographic B-scans that have sizes ~several millimeters similarly to bioptates used for “gold-standard” histological examinations. The method relies on identification of several main tissue constituents differing in their stiffness in the OCE scans. Initially the specific stiffness ranges for the analyzed tissue components (adipose tissue, fibrous and hyalinized tumor stroma, lymphocytic infiltrate and agglomerates of tumor cells) are determined via comparison of OCE and morphological/molecular data. Then assessment of non-tumor/tumor regions and tumor subtypes is made based on percentage of pixels with different characteristic stiffness (“stiffness spectrum”) in the OCE image, also taking into account spatial localization of different-stiffness regions. Examples of high contrast among benign (or non-invasive) and several subtypes of invasive breast tumors in terms of their stiffness spectra are given.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

18 April 2019: Typographical corrections were made to the body text.


OSA Recommended Articles
Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins

Wes M. Allen, Lixin Chin, Philip Wijesinghe, Rodney W. Kirk, Bruce Latham, David D. Sampson, Christobel M. Saunders, and Brendan F. Kennedy
Biomed. Opt. Express 7(10) 4139-4153 (2016)

Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging

Yaliang Yang, Fuhai Li, Liang Gao, Zhiyong Wang, Michael J. Thrall, Steven S. Shen, Kelvin K. Wong, and Stephen T. C. Wong
Biomed. Opt. Express 2(8) 2160-2174 (2011)

Slide-free virtual histochemistry (Part II): detection of field cancerization

Sixian You, Yi Sun, Eric J. Chaney, Youbo Zhao, Jianxin Chen, Stephen A. Boppart, and Haohua Tu
Biomed. Opt. Express 9(11) 5253-5268 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA Cancer J. Clin. 68(1), 7–30 (2018).
    [Crossref] [PubMed]
  2. M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
    [Crossref] [PubMed]
  3. K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
    [Crossref] [PubMed]
  4. K. H. Allison, “Molecular pathology of breast cancer: what a pathologist needs to know,” Am. J. Clin. Pathol. 138(6), 770–780 (2012).
    [Crossref] [PubMed]
  5. M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
    [Crossref] [PubMed]
  6. A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
    [Crossref] [PubMed]
  7. O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
    [Crossref] [PubMed]
  8. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
    [Crossref] [PubMed]
  9. X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
    [Crossref] [PubMed]
  10. F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
    [Crossref] [PubMed]
  11. R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
    [Crossref] [PubMed]
  12. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
    [Crossref] [PubMed]
  13. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
    [Crossref] [PubMed]
  14. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref] [PubMed]
  15. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
    [Crossref] [PubMed]
  16. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
    [Crossref]
  17. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
    [Crossref] [PubMed]
  18. W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
    [Crossref] [PubMed]
  19. L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
    [Crossref] [PubMed]
  20. B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
    [Crossref] [PubMed]
  21. A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
    [Crossref]
  22. V. M. Gelikonov and G. V. Gelikonov, “New approach to crosspolarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
    [Crossref]
  23. V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
    [Crossref]
  24. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
    [Crossref]
  25. A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
    [Crossref]
  26. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
    [Crossref] [PubMed]
  27. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
    [Crossref] [PubMed]
  28. A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment ” Proc SPIE International Symposium on Optics and Biophotonics VI: Saratov Fall Meeting 2018 15, 1–8, in print (2019).
  29. J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
    [Crossref] [PubMed]
  30. J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
    [Crossref] [PubMed]
  31. S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
    [Crossref]
  32. M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
    [Crossref] [PubMed]
  33. S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).
  34. V. E. Gazhonova, M. P. Efremova, and E. A. Dorokhova, “Correlation between US-imaging with use of 3D ABWS and immune-histochemical profile of breast cancer invasive carcinomas [in Russian],” Oncology bulletin of the Volga region 2, 26–32 (2016).
  35. J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
    [Crossref] [PubMed]
  36. A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
    [Crossref] [PubMed]

2018 (7)

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref] [PubMed]

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

2017 (5)

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

2016 (4)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

V. E. Gazhonova, M. P. Efremova, and E. A. Dorokhova, “Correlation between US-imaging with use of 3D ABWS and immune-histochemical profile of breast cancer invasive carcinomas [in Russian],” Oncology bulletin of the Volga region 2, 26–32 (2016).

2015 (3)

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

2014 (3)

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref] [PubMed]

2013 (3)

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

2012 (2)

2011 (2)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

2009 (3)

S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
[Crossref]

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

2006 (1)

V. M. Gelikonov and G. V. Gelikonov, “New approach to crosspolarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

2002 (1)

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

1998 (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Adie, S. G.

Aleskandarany, M. A.

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Allen, W. M.

Allison, K. H.

K. H. Allison, “Molecular pathology of breast cancer: what a pathologist needs to know,” Am. J. Clin. Pathol. 138(6), 770–780 (2012).
[Crossref] [PubMed]

Ando, A.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Bae, M. S.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

Balani, S.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Barth, R. J.

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

Bellafiore, F. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Boisserie-Lacroix, M.

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Bonnefoi, H.

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Boppart, S. A.

F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Buyanova, N.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Caldarella, P.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Catalano, M.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Catalano, O. A.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Catana, C.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Chaney, E. J.

F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Chang, E.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Chang, J. M.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Chavez-MacGregor, M.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Chin, L.

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

Cho, N.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Curatolo, A.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Demin, I. Y.

S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
[Crossref]

Dorokhova, E. A.

V. E. Gazhonova, M. P. Efremova, and E. A. Dorokhova, “Correlation between US-imaging with use of 3D ABWS and immune-histochemical profile of breast cancer invasive carcinomas [in Russian],” Oncology bulletin of the Volga region 2, 26–32 (2016).

Doyley, M. M.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Efremova, M. P.

V. E. Gazhonova, M. P. Efremova, and E. A. Dorokhova, “Correlation between US-imaging with use of 3D ABWS and immune-histochemical profile of breast cancer invasive carcinomas [in Russian],” Oncology bulletin of the Volga region 2, 26–32 (2016).

Elagin, V.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Ellis, I. O.

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Feldchtein, F.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Feldman, S.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Ferron, S.

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Frasson, A.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Freedman, G.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Gan, Y.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Gatti, G.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Gazhonova, V. E.

V. E. Gazhonova, M. P. Efremova, and E. A. Dorokhova, “Correlation between US-imaging with use of 3D ABWS and immune-histochemical profile of breast cancer invasive carcinomas [in Russian],” Oncology bulletin of the Volga region 2, 26–32 (2016).

Gelikonov, G.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Gelikonov, G. V.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

V. M. Gelikonov and G. V. Gelikonov, “New approach to crosspolarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

Gelikonov, V.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Gelikonov, V. M.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

V. M. Gelikonov and G. V. Gelikonov, “New approach to crosspolarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

Giuliano, A. E.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Gladkova, N.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Gladkova, N. D.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

Gubarkova, E. V.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

Gurbatov, S. N.

S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
[Crossref]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Han, W.

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Harris, J. R.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Hendon, C.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Hibshoosh, H.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Horn, G. L.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Horton, J.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Houssami, N.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Hurtevent-Labrot, G.

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Iannace, C.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Iwao, K.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Jain, J.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Jemal, A.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref] [PubMed]

Johnson, P. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Johnson, P. L.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Kato, K.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Kennedy, B. F.

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

Khan, A.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Khan, S. A.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Kim, S. J.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Kim, W. H.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

Kirk, R. W.

Kiseleva, E.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Klemin, V. A.

S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
[Crossref]

Klemina, A. V.

S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
[Crossref]

Klimberg, S.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Koh, S. H.

Koo, H. R.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Kotynek, J. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Ksenofontov, S. Y.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

Kuznetsov, S.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Latham, B.

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

Lee, S. H.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

Lehman, C.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Lepore, M.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Lippa, N.

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Liu, Q.

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

Luini, A.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Luongo, A.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Mac Grogan, G.

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Mahmood, U.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Malik, R.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Maloney, B. W.

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

Marchiò, C.

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Marjanovic, M.

Matoba, R.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Matsubara, K.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Matveev, L.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Matveev, L. A.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

Matveyev, A. L.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

McClatchy, D. M.

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

McLaughlin, R. A.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

Miller, K. D.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref] [PubMed]

Miyoshi, Y.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Moiseev, A.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Moiseev, A. A.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

Moon, H. G.

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Moon, W. K.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Moran, M. S.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Morrow, M.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Munro, P. R.

Nguyen, F. T.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Nigam, R. K.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Noguchi, S.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Noh, D. Y.

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Oliphant, U. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Pandey, D.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Park, I. A.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Patel, R.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Paulsen, K. D.

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

Quinlan, R.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Rai, A.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Rakha, E. A.

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Romashov, V. N.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

Ronald, M.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Rosali dos Santos, G.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Rosen, B. R.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Rososchansky, J.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Rowland, K. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Salvatore, M.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Sampson, D. D.

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

Sapino, A.

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Saunders, C. M.

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

Schnitt, S. J.

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

Shabanov, D. V.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Shilyagin, P. A.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

Siegel, R. L.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref] [PubMed]

Signore, A.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Sirotkina, M.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Sirotkina, M. A.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

Snopova, L.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Soricelli, A.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

South, F. A.

Sovetsky, A. A.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

Terpelov, D. A.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

Tian, J.

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

Tien, A.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Tiwari, S.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Trichal, V. K.

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Ueno, N.

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Vandenberghe, M. E.

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Vangel, M.

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Viale, G.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Vitkin, A.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

Vitkin, I. A.

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

Wang, X.

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

Wells, W. A.

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Wijesinghe, P.

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Wu, C.

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

Xing, P.

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

Yang, Z.

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

Yao, X.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Yaroslavsky, A. N.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Yi, A.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

Zagaynova, E.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Zagaynova, E. V.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

Zaitsev, V.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

Zaitsev, V. Y.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

Zurrida, S.

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

Zysk, A. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

Acoust. Phys. (1)

S. N. Gurbatov, I. Y. Demin, A. V. Klemina, and V. A. Klemin, “Acoustic Analysis of the Composition of Human Blood Serum,” Acoust. Phys. 55(4-5), 510–518 (2009).
[Crossref]

Am. J. Clin. Pathol. (1)

K. H. Allison, “Molecular pathology of breast cancer: what a pathologist needs to know,” Am. J. Clin. Pathol. 138(6), 770–780 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Cancer (1)

O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, A. Soricelli, C. Catana, U. Mahmood, and B. R. Rosen, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” Br. J. Cancer 116(7), 893–902 (2017).
[Crossref] [PubMed]

Breast Cancer Res. Treat. (2)

A. Luini, J. Rososchansky, G. Gatti, S. Zurrida, P. Caldarella, G. Viale, G. Rosali dos Santos, and A. Frasson, “The surgical margin status after breast-conserving surgery: discussion of an open issue,” Breast Cancer Res. Treat. 113(2), 397–402 (2009).
[Crossref] [PubMed]

J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, and S. J. Kim, “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Res. Treat. 129(1), 89–97 (2011).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref] [PubMed]

Cancer Res. (3)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Diagn. Interv. Imaging (1)

M. Boisserie-Lacroix, G. Hurtevent-Labrot, S. Ferron, N. Lippa, H. Bonnefoi, and G. Mac Grogan, “Correlation between imaging and molecular classification of breast cancers,” Diagn. Interv. Imaging 94(11), 1069–1080 (2013).
[Crossref] [PubMed]

Eur. Radiol. (1)

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol. 23(9), 2450–2458 (2013).
[Crossref] [PubMed]

Hum. Mol. Genet. (1)

K. Iwao, R. Matoba, N. Ueno, A. Ando, Y. Miyoshi, K. Matsubara, S. Noguchi, and K. Kato, “Molecular classification of primary breast tumors possessing distinct prognostic properties,” Hum. Mol. Genet. 11(2), 199–206 (2002).
[Crossref] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. (1)

M. S. Moran, S. J. Schnitt, A. E. Giuliano, J. R. Harris, S. A. Khan, J. Horton, S. Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, P. L. Johnson, and M. Morrow, “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer,” Int. J. Radiat. Oncol. Biol. Phys. 88(3), 553–564 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref] [PubMed]

B. W. Maloney, D. M. McClatchy, B. W. Pogue, K. D. Paulsen, W. A. Wells, and R. J. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref] [PubMed]

J. Biophotonics (3)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref] [PubMed]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref] [PubMed]

L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” J. Biophotonics 10(5), 690–700 (2017).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innov. Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

Laser Phys. Lett. (4)

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

V. M. Gelikonov and G. V. Gelikonov, “New approach to crosspolarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

Lasers Surg. Med. (1)

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref] [PubMed]

Oncology bulletin of the Volga region (1)

V. E. Gazhonova, M. P. Efremova, and E. A. Dorokhova, “Correlation between US-imaging with use of 3D ABWS and immune-histochemical profile of breast cancer invasive carcinomas [in Russian],” Oncology bulletin of the Volga region 2, 26–32 (2016).

Pathobiology (1)

M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha, “Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine,” Pathobiology 85(1-2), 23–34 (2018).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Radiophys. Quantum Electron. (1)

V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system,” Radiophys. Quantum Electron. 60(11), 897–911 (2018).
[Crossref]

Sch. J. App. Med. Sci. (1)

S. Tiwari, R. Malik, V. K. Trichal, R. K. Nigam, A. Rai, S. Balani, J. Jain, and D. Pandey, “Breast Cancer: Correlation of Molecular Classification with Clinicohistopathology,” Sch. J. App. Med. Sci. 3, 1018–1026 (2015).

Sci. Rep. (2)

J. Tian, Q. Liu, X. Wang, P. Xing, Z. Yang, and C. Wu, “Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses,” Sci. Rep. 7(1), 41216 (2017).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

Ultrason. Imaging (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Other (1)

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment ” Proc SPIE International Symposium on Optics and Biophotonics VI: Saratov Fall Meeting 2018 15, 1–8, in print (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Elucidation of experimental OCE procedures. Panel (a) is the photo of a typical breast-tissue sample; (b) shows the OCT probe pressing onto the studied sample; (c) is a color-coded map of inter-frame phase variation; (d) structural OCT B-scan of cancerous tissue under reference silicone; (e) is the reconstructed OCE image obtained for the pre-selected strain level in the silicone (and, thus, standardized pressure applied to the tissue); (f) is a histogram showing the normalized stiffness spectrum (percentage of pixels with different Young modulus) in the tissue within the chosen ROI window shown by the dashed rectangle in the tissue in panel (e). The small rectange in panel (e) in the upper silicone layer shows the area size, over which the phase-variation gradient was averaged for estimating local strains.
Fig. 2
Fig. 2 Left-to-right columns present comparative OCT-based and histological results for: non-tumorous (normal) breast tissue, benign fibroadenoma (green box), non-invasive (blue box) and invasive (orange box) ductal breast carcinomas. Magenta-color (solid line) rectangles in the CP OCT and OCE images indicate the areas covered by respective histologic sections. The black dashed-line rectangles in the OCE images indicate the tissue areas, over which histograms of normalized stiffness spectrum were calculated. Letters in the images show areas of normal breast terminal duct lobular units (TDLUs); fibrous stroma (FS); adipose tissue (A), atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC) and agglomerates of tumor cells (TC). Scale bars correspond to 0.5 mm in all panels. Unlike Fig. 1(e) the upper silicone layer is not shown in the OCE images.
Fig. 3
Fig. 3 Left-to-write columns present comparative OCT-based and histological results for main molecular subtypes of IDC: low grade Luminal B (Her2/neo-) with fairly good treatment prognosis (orange box) and high grade invasive tumors with poor prognosis (grouped in big red box): Luminal B (Her2/neo + ), non-luminal and triple-negative breast cancers. Magenta-color (solid line) rectangles in the CP OCT and OCE images indicate the areas covered by the respective histologic sections. The dashed-line rectangles in the OCE images indicate the tissue area over which histograms of the stiffness spectrum were calculated. Letters in the images indicated locations of agglomerates of tumor cells (TC), fibrous stroma (FS), hyalinized stroma (HS) and lymphocytic infiltrate (LI). Scale bars correspond to 0.5 mm in all panels. Unlike Fig. 1(e) the upper silicone layer is not shown in the OCE images.
Fig. 4
Fig. 4 Correspondence between the characteristic stiffness ranges and main types of breast-tissue components derived from detailed comparison of histological and OCE images.
Fig. 5
Fig. 5 Visualization of a transitional zone between peritumoral (normal) breast tissue and tumor region using structural CP OCT, histological image and OCE-based images: (a) is the CP OCT image; (b) is the H&E-histological slice; (c) is the stiffness map through approximately the same plane (we recall that after OCE examination the sample shape was noticeably distorted during preparation of the histological slices); (d) morphological segmentation of the OCE image into areas corresponding to various tissue components, for which stiffness ranges are shown in Fig. 4.
Fig. 6
Fig. 6 Average Young modulus (Emean) and standard deviation (SD) of stiffness for OCE images of breast cancer with different molecular subtypes. The Emean were found for ROIs shown in Figs. 2 and 3. Asterisk (*) indicates a statistically significant difference between Emean for normal breast tissue and all other molecular types of lesions (Bonferroni post-hoc test for multiple comparisons, with р < 0.05). Double asterisk (**) indicates a statistically significant difference (Bonferroni post-hoc test for multiple comparisons, with p < 0.05) between Emean for breast lesions of low histological grade prognosis (fibroadenoma, DCIS, Luminal A) and 3 subtypes of the most-malignant (aggressive) invasive breast cancer with a poor prognosis (Luminal B (Her2/neo + ), non-luminal and triple-negative); n is the number of examined samples for each subtype.
Fig. 7
Fig. 7 Percentage of pixels belonging to different stiffness ranges (normalized stiffness spectrum) for normal tissue, fibroadenoma, DCIS and 5 invasive breast cancer with different molecular subtypes the same as in Fig. 6 (for each group the number n of examined samples is given in the parenthes). The spectra were found for ROI shown in Figs. 2 and 3. To give a better impression about similarity/variability of elastic properties of individual specimens, “Appendix A1” demonstrates stiffness spectra for individual samples from the following 3 groups: Luminal B (Her2/neu + ), Luminal B (Her2/neu-) and fibroadenoma. Besides, “Appendix A2” presents several examples of differently chosen ROI windows for the same sample (Non-luminal cancer) to illustrate robustness of the normalized spectra to variations in the ROI position and size.
Fig. 8
Fig. 8 Stiffness-percentage graphs for individual tumor specimens of the same type. The right half of the figure shows the resultant averaged graphs the same as in Fig. 7.
Fig. 9
Fig. 9 Illustration of the dependence of the calculated stiffness spectrum on the size and position of the ROI window. Panel (a) is the stiffness map for one of specimens of invasive Non-luminal cancer similar to OCE maps shown in Figs. 2 and 3, but shown together with the silicone layer. The dashed rectangles (magenta color) labeled 1,2, and 3 show the ROI zones covering 1/3 of the OCE image area. The histograms (b), (c) and (d) labeled by the corresponding numbers show the stiffness spectra for each of the 3 ROI windows. The histogram (e) is calculated for the larger ROI window shown by the yellow dashed rectangle in panel (a). The color-ribbons below the histograms are the stiffness-percentage graphs similar to those in Fig. 7 corresponding to the smaller ROI windows from 1 to 3 in panels (b), (c) and (d) and the larger ROI window over the entire OCE scan of the tissue stiffness (panel (e)).

Metrics