S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

S. K. Kalva, P. K. Upputuri, and M. Pramanik, “High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system,” Opt. Lett. 44, 81–84 (2019).

[Crossref]
[PubMed]

P. P. Pai, A. De, and S. Banerjee, “Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration,” IEEE Transactions on Instrumentation Meas. 67, 126–136 (2018).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography,” J. Biomed. Opt. 23, 071204 (2018).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Image-guided filtering for improving photoacoustic tomographic image reconstruction,” J. Biomed. Opt. 23, 091413 (2018).

[Crossref]

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22, 041006 (2017).

[Crossref]

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

L. Li, L. Zhu, Y. Shen, and L. V. Wang, “Multiview hilbert transformation in full-ring transducer array-based photoacoustic computed tomography,” J. Biomed. Opt. 22, 076017 (2017).

[Crossref]

S. K. Kalva and M. Pramanik, “Experimental validation of tangential resolution improvement in photoacoustic tomography using modified delay-and-sum reconstruction algorithm,” J. Biomed. Opt. 21, 086011 (2016).

[Crossref]

D. Van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, “Comparison of deconvolution filters for photoacoustic tomography,” PloS One 11, e0152597 (2016).

[Crossref]
[PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).

[Crossref]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

M. Bhatt, A. Acharya, and P. K. Yalavarthy, “Computationally efficient error estimate for evaluation of regularization in photoacoustic tomography,” J. Biomed. Opt. 21, 106002 (2016).

[Crossref]
[PubMed]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the twente experience,” IEEE Pulse 6, 42–46 (2015).

[Crossref]
[PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging,” IEEE Transactions on Med. Imaging 33, 891–901 (2014).

[Crossref]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5, 1363–1377 (2014).

[Crossref]
[PubMed]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least squares qr-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[Crossref]

S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Transactions on Image Process. 22, 2864–2875 (2013).

[Crossref]

J. Chen, R. Lin, H. Wang, J. Meng, H. Zheng, and L. Song, “Blind-deconvolution optical-resolution photoacoustic microscopy in vivo,” Opt. Express 21, 7316–7327 (2013).

[Crossref]
[PubMed]

J. Prakash and P. K. Yalavarthy, “A lsqr-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Med. Phys. 40, 033101 (2013).

[Crossref]
[PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Curr. Med. Imaging Rev. 9, 318–336 (2013).

[Crossref]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of optoacoustic model-based reconstruction using angular image discretization,” IEEE Transactions on Med. Imaging 31, 1154–1162 (2012).

[Crossref]

X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Transactions on Med. Imaging 31, 1922–1928 (2012).

[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[Crossref]
[PubMed]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Medicine Biol. 57, 5399–5423 (2012).

[Crossref]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

K. Jansen, A. F. Van Der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2011).

[Crossref]
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

[Crossref]
[PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography,” Med. Phys. 35, 2218–2223 (2008).

[Crossref]
[PubMed]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. on Imaging Sci. 1, 248–272 (2008).

[Crossref]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20, 89–97 (2004).

[Crossref]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

[Crossref]
[PubMed]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt. 43, 1053–1062 (2004).

[Crossref]
[PubMed]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” The J. Acoust. Soc. Am. 112, 1536–1544 (2002).

[Crossref]
[PubMed]

M. E. Kilmer and D. P. O’Leary, “Choosing regularization parameters in iterative methods for ill-posed problems,” SIAM J. on Matrix Analysis Appl. 22, 1204–1221 (2001).

[Crossref]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Med. Imaging 19, 203–210 (2000).

[Crossref]

J. Eckstein and D. P. Bertsekas, “On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations and sparse least squares,” ACM Transactions on Math. Softw. 8, 43–71 (1982).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

M. Bhatt, A. Acharya, and P. K. Yalavarthy, “Computationally efficient error estimate for evaluation of regularization in photoacoustic tomography,” J. Biomed. Opt. 21, 106002 (2016).

[Crossref]
[PubMed]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

[Crossref]
[PubMed]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Medicine Biol. 57, 5399–5423 (2012).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography,” J. Biomed. Opt. 23, 071204 (2018).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Image-guided filtering for improving photoacoustic tomographic image reconstruction,” J. Biomed. Opt. 23, 091413 (2018).

[Crossref]

D. Kingma and J. A. Ba, “A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

K. R. Prabhakar, V. S. Srikar, and R. V. Babu, “Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs,” in 2017 IEEE International Conference on Computer Vision (ICCV).IEEE, (2017), pp. 4724–4732.

[Crossref]

P. P. Pai, A. De, and S. Banerjee, “Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration,” IEEE Transactions on Instrumentation Meas. 67, 126–136 (2018).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

J. Eckstein and D. P. Bertsekas, “On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

M. Bhatt, A. Acharya, and P. K. Yalavarthy, “Computationally efficient error estimate for evaluation of regularization in photoacoustic tomography,” J. Biomed. Opt. 21, 106002 (2016).

[Crossref]
[PubMed]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Transactions on Med. Imaging 31, 1922–1928 (2012).

[Crossref]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20, 89–97 (2004).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

[Crossref]
[PubMed]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

P. P. Pai, A. De, and S. Banerjee, “Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration,” IEEE Transactions on Instrumentation Meas. 67, 126–136 (2018).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of optoacoustic model-based reconstruction using angular image discretization,” IEEE Transactions on Med. Imaging 31, 1154–1162 (2012).

[Crossref]

X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Transactions on Med. Imaging 31, 1922–1928 (2012).

[Crossref]

J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging,” IEEE Transactions on Med. Imaging 33, 891–901 (2014).

[Crossref]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt. 43, 1053–1062 (2004).

[Crossref]
[PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” in Photons Plus Ultrasound: Imaging and Sensing 2013, vol. 8581 (International Society for Optics and Photonics, 2013), p. 85813Y.

J. Eckstein and D. P. Bertsekas, “On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

D. Van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, “Comparison of deconvolution filters for photoacoustic tomography,” PloS One 11, e0152597 (2016).

[Crossref]
[PubMed]

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Med. Imaging 19, 203–210 (2000).

[Crossref]

S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

M. Tao, J. Yang, and B. He, “Alternating direction algorithms for total variation deconvolution in image reconstruction,” TR0918, Dep. Math. Nanjing Univ. (2009).

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the twente experience,” IEEE Pulse 6, 42–46 (2015).

[Crossref]
[PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Med. Imaging 19, 203–210 (2000).

[Crossref]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Transactions on Image Process. 22, 2864–2875 (2013).

[Crossref]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[Crossref]
[PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” The J. Acoust. Soc. Am. 112, 1536–1544 (2002).

[Crossref]
[PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

D. Van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, “Comparison of deconvolution filters for photoacoustic tomography,” PloS One 11, e0152597 (2016).

[Crossref]
[PubMed]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

S. K. Kalva, P. K. Upputuri, and M. Pramanik, “High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system,” Opt. Lett. 44, 81–84 (2019).

[Crossref]
[PubMed]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography,” J. Biomed. Opt. 23, 071204 (2018).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Image-guided filtering for improving photoacoustic tomographic image reconstruction,” J. Biomed. Opt. 23, 091413 (2018).

[Crossref]

S. K. Kalva and M. Pramanik, “Experimental validation of tangential resolution improvement in photoacoustic tomography using modified delay-and-sum reconstruction algorithm,” J. Biomed. Opt. 21, 086011 (2016).

[Crossref]

S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Transactions on Image Process. 22, 2864–2875 (2013).

[Crossref]

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

M. E. Kilmer and D. P. O’Leary, “Choosing regularization parameters in iterative methods for ill-posed problems,” SIAM J. on Matrix Analysis Appl. 22, 1204–1221 (2001).

[Crossref]

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

D. Kingma and J. A. Ba, “A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” in Photons Plus Ultrasound: Imaging and Sensing 2013, vol. 8581 (International Society for Optics and Photonics, 2013), p. 85813Y.

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Med. Imaging 19, 203–210 (2000).

[Crossref]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography,” Med. Phys. 35, 2218–2223 (2008).

[Crossref]
[PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

[Crossref]
[PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography,” Med. Phys. 35, 2218–2223 (2008).

[Crossref]
[PubMed]

L. Li, L. Zhu, Y. Shen, and L. V. Wang, “Multiview hilbert transformation in full-ring transducer array-based photoacoustic computed tomography,” J. Biomed. Opt. 22, 076017 (2017).

[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Transactions on Image Process. 22, 2864–2875 (2013).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the twente experience,” IEEE Pulse 6, 42–46 (2015).

[Crossref]
[PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

H. B. Mitchell, Image Fusion: Theories, Techniques and Applications (Springer Science & Business Media, 2010).

[Crossref]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Curr. Med. Imaging Rev. 9, 318–336 (2013).

[Crossref]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of optoacoustic model-based reconstruction using angular image discretization,” IEEE Transactions on Med. Imaging 31, 1154–1162 (2012).

[Crossref]

X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Transactions on Med. Imaging 31, 1922–1928 (2012).

[Crossref]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

M. E. Kilmer and D. P. O’Leary, “Choosing regularization parameters in iterative methods for ill-posed problems,” SIAM J. on Matrix Analysis Appl. 22, 1204–1221 (2001).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Medicine Biol. 57, 5399–5423 (2012).

[Crossref]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

P. P. Pai, A. De, and S. Banerjee, “Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration,” IEEE Transactions on Instrumentation Meas. 67, 126–136 (2018).

[Crossref]

C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations and sparse least squares,” ACM Transactions on Math. Softw. 8, 43–71 (1982).

[Crossref]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” The J. Acoust. Soc. Am. 112, 1536–1544 (2002).

[Crossref]
[PubMed]

J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging,” IEEE Transactions on Med. Imaging 33, 891–901 (2014).

[Crossref]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt. 43, 1053–1062 (2004).

[Crossref]
[PubMed]

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” in Photons Plus Ultrasound: Imaging and Sensing 2013, vol. 8581 (International Society for Optics and Photonics, 2013), p. 85813Y.

K. R. Prabhakar, V. S. Srikar, and R. V. Babu, “Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs,” in 2017 IEEE International Conference on Computer Vision (ICCV).IEEE, (2017), pp. 4724–4732.

[Crossref]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” The J. Acoust. Soc. Am. 112, 1536–1544 (2002).

[Crossref]
[PubMed]

J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging,” IEEE Transactions on Med. Imaging 33, 891–901 (2014).

[Crossref]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5, 1363–1377 (2014).

[Crossref]
[PubMed]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least squares qr-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[Crossref]

J. Prakash and P. K. Yalavarthy, “A lsqr-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Med. Phys. 40, 033101 (2013).

[Crossref]
[PubMed]

S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

S. K. Kalva, P. K. Upputuri, and M. Pramanik, “High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system,” Opt. Lett. 44, 81–84 (2019).

[Crossref]
[PubMed]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Image-guided filtering for improving photoacoustic tomographic image reconstruction,” J. Biomed. Opt. 23, 091413 (2018).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography,” J. Biomed. Opt. 23, 071204 (2018).

[Crossref]

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22, 041006 (2017).

[Crossref]

S. K. Kalva and M. Pramanik, “Experimental validation of tangential resolution improvement in photoacoustic tomography using modified delay-and-sum reconstruction algorithm,” J. Biomed. Opt. 21, 086011 (2016).

[Crossref]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5, 1363–1377 (2014).

[Crossref]
[PubMed]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least squares qr-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[Crossref]

M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography,” Med. Phys. 35, 2218–2223 (2008).

[Crossref]
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Curr. Med. Imaging Rev. 9, 318–336 (2013).

[Crossref]

X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Transactions on Med. Imaging 31, 1922–1928 (2012).

[Crossref]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of optoacoustic model-based reconstruction using angular image discretization,” IEEE Transactions on Med. Imaging 31, 1154–1162 (2012).

[Crossref]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Curr. Med. Imaging Rev. 9, 318–336 (2013).

[Crossref]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

D. Van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, “Comparison of deconvolution filters for photoacoustic tomography,” PloS One 11, e0152597 (2016).

[Crossref]
[PubMed]

C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations and sparse least squares,” ACM Transactions on Math. Softw. 8, 43–71 (1982).

[Crossref]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5, 1363–1377 (2014).

[Crossref]
[PubMed]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least squares qr-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[Crossref]

L. Li, L. Zhu, Y. Shen, and L. V. Wang, “Multiview hilbert transformation in full-ring transducer array-based photoacoustic computed tomography,” J. Biomed. Opt. 22, 076017 (2017).

[Crossref]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

K. R. Prabhakar, V. S. Srikar, and R. V. Babu, “Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs,” in 2017 IEEE International Conference on Computer Vision (ICCV).IEEE, (2017), pp. 4724–4732.

[Crossref]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the twente experience,” IEEE Pulse 6, 42–46 (2015).

[Crossref]
[PubMed]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Medicine Biol. 57, 5399–5423 (2012).

[Crossref]

M. Tao, J. Yang, and B. He, “Alternating direction algorithms for total variation deconvolution in image reconstruction,” TR0918, Dep. Math. Nanjing Univ. (2009).

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

[Crossref]
[PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

S. K. Kalva, P. K. Upputuri, and M. Pramanik, “High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system,” Opt. Lett. 44, 81–84 (2019).

[Crossref]
[PubMed]

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22, 041006 (2017).

[Crossref]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

D. Van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, “Comparison of deconvolution filters for photoacoustic tomography,” PloS One 11, e0152597 (2016).

[Crossref]
[PubMed]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” The J. Acoust. Soc. Am. 112, 1536–1544 (2002).

[Crossref]
[PubMed]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Medicine Biol. 57, 5399–5423 (2012).

[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

L. Li, L. Zhu, Y. Shen, and L. V. Wang, “Multiview hilbert transformation in full-ring transducer array-based photoacoustic computed tomography,” J. Biomed. Opt. 22, 076017 (2017).

[Crossref]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).

[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[Crossref]
[PubMed]

M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography,” Med. Phys. 35, 2218–2223 (2008).

[Crossref]
[PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

[Crossref]
[PubMed]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. on Imaging Sci. 1, 248–272 (2008).

[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

[Crossref]
[PubMed]

S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography,” J. Biomed. Opt. 23, 071204 (2018).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Image-guided filtering for improving photoacoustic tomographic image reconstruction,” J. Biomed. Opt. 23, 091413 (2018).

[Crossref]

M. Bhatt, A. Acharya, and P. K. Yalavarthy, “Computationally efficient error estimate for evaluation of regularization in photoacoustic tomography,” J. Biomed. Opt. 21, 106002 (2016).

[Crossref]
[PubMed]

J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging,” IEEE Transactions on Med. Imaging 33, 891–901 (2014).

[Crossref]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5, 1363–1377 (2014).

[Crossref]
[PubMed]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least squares qr-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[Crossref]

J. Prakash and P. K. Yalavarthy, “A lsqr-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Med. Phys. 40, 033101 (2013).

[Crossref]
[PubMed]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. on Imaging Sci. 1, 248–272 (2008).

[Crossref]

M. Tao, J. Yang, and B. He, “Alternating direction algorithms for total variation deconvolution in image reconstruction,” TR0918, Dep. Math. Nanjing Univ. (2009).

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).

[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. on Imaging Sci. 1, 248–272 (2008).

[Crossref]

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” in Photons Plus Ultrasound: Imaging and Sensing 2013, vol. 8581 (International Society for Optics and Photonics, 2013), p. 85813Y.

G. L. Zeng, Medical Image Reconstruction: A Conceptual Tutorial (Springer, 2010).

[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. on Imaging Sci. 1, 248–272 (2008).

[Crossref]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).

[Crossref]

L. Li, L. Zhu, Y. Shen, and L. V. Wang, “Multiview hilbert transformation in full-ring transducer array-based photoacoustic computed tomography,” J. Biomed. Opt. 22, 076017 (2017).

[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).

[Crossref]
[PubMed]

C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations and sparse least squares,” ACM Transactions on Math. Softw. 8, 43–71 (1982).

[Crossref]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Curr. Med. Imaging Rev. 9, 318–336 (2013).

[Crossref]

S. Gutta, M. Bhatt, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Modeling errors compensation with total least squares for limited data photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019).

[Crossref]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the twente experience,” IEEE Pulse 6, 42–46 (2015).

[Crossref]
[PubMed]

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble classification-based approach applied to retinal blood vessel segmentation,” IEEE Transactions on Biomed. Eng. 59, 2538–2548 (2012).

[Crossref]

S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Transactions on Image Process. 22, 2864–2875 (2013).

[Crossref]

P. P. Pai, A. De, and S. Banerjee, “Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration,” IEEE Transactions on Instrumentation Meas. 67, 126–136 (2018).

[Crossref]

J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging,” IEEE Transactions on Med. Imaging 33, 891–901 (2014).

[Crossref]

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Med. Imaging 19, 203–210 (2000).

[Crossref]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Med. Imaging 23, 501–509 (2004).

[Crossref]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of optoacoustic model-based reconstruction using angular image discretization,” IEEE Transactions on Med. Imaging 31, 1154–1162 (2012).

[Crossref]

X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Transactions on Med. Imaging 31, 1922–1928 (2012).

[Crossref]

S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, “On the adjoint operator in photoacoustic tomography,” Inverse Probl. 32, 115012 (2016).

[Crossref]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[Crossref]
[PubMed]

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22, 041006 (2017).

[Crossref]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).

[Crossref]

M. Bhatt, A. Acharya, and P. K. Yalavarthy, “Computationally efficient error estimate for evaluation of regularization in photoacoustic tomography,” J. Biomed. Opt. 21, 106002 (2016).

[Crossref]
[PubMed]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Image-guided filtering for improving photoacoustic tomographic image reconstruction,” J. Biomed. Opt. 23, 091413 (2018).

[Crossref]

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da vinci robot,” J. Biomed. Opt. 22, 121606 (2017).

[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

[Crossref]
[PubMed]

L. Li, L. Zhu, Y. Shen, and L. V. Wang, “Multiview hilbert transformation in full-ring transducer array-based photoacoustic computed tomography,” J. Biomed. Opt. 22, 076017 (2017).

[Crossref]

S. K. Kalva and M. Pramanik, “Experimental validation of tangential resolution improvement in photoacoustic tomography using modified delay-and-sum reconstruction algorithm,” J. Biomed. Opt. 21, 086011 (2016).

[Crossref]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least squares qr-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[Crossref]

N. Awasthi, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, “Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography,” J. Biomed. Opt. 23, 071204 (2018).

[Crossref]

S. J. Ford, P. L. Bigliardi, T. C. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Bigliardi, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Investig. Dermatol. 136, 753–761 (2016).

[Crossref]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20, 89–97 (2004).

[Crossref]

J. Eckstein and D. P. Bertsekas, “On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

J. Prakash and P. K. Yalavarthy, “A lsqr-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Med. Phys. 40, 033101 (2013).

[Crossref]
[PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

[Crossref]
[PubMed]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38, 1694–1704 (2011).

[Crossref]
[PubMed]

M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography,” Med. Phys. 35, 2218–2223 (2008).

[Crossref]
[PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 4013301 (2013).

[Crossref]
[PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).

[Crossref]
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).

[Crossref]
[PubMed]

J. Chen, R. Lin, H. Wang, J. Meng, H. Zheng, and L. Song, “Blind-deconvolution optical-resolution photoacoustic microscopy in vivo,” Opt. Express 21, 7316–7327 (2013).

[Crossref]
[PubMed]

K. Jansen, A. F. Van Der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2011).

[Crossref]
[PubMed]

S. K. Kalva, P. K. Upputuri, and M. Pramanik, “High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system,” Opt. Lett. 44, 81–84 (2019).

[Crossref]
[PubMed]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine Biol. 61, 8908–8940 (2016).

[Crossref]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Medicine Biol. 57, 5399–5423 (2012).

[Crossref]

D. Van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, “Comparison of deconvolution filters for photoacoustic tomography,” PloS One 11, e0152597 (2016).

[Crossref]
[PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[Crossref]
[PubMed]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. on Imaging Sci. 1, 248–272 (2008).

[Crossref]

M. E. Kilmer and D. P. O’Leary, “Choosing regularization parameters in iterative methods for ill-posed problems,” SIAM J. on Matrix Analysis Appl. 22, 1204–1221 (2001).

[Crossref]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” The J. Acoust. Soc. Am. 112, 1536–1544 (2002).

[Crossref]
[PubMed]

H. B. Mitchell, Image Fusion: Theories, Techniques and Applications (Springer Science & Business Media, 2010).

[Crossref]

G. L. Zeng, Medical Image Reconstruction: A Conceptual Tutorial (Springer, 2010).

[Crossref]

M. Tao, J. Yang, and B. He, “Alternating direction algorithms for total variation deconvolution in image reconstruction,” TR0918, Dep. Math. Nanjing Univ. (2009).

K. R. Prabhakar, V. S. Srikar, and R. V. Babu, “Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs,” in 2017 IEEE International Conference on Computer Vision (ICCV).IEEE, (2017), pp. 4724–4732.

[Crossref]

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” in Photons Plus Ultrasound: Imaging and Sensing 2013, vol. 8581 (International Society for Optics and Photonics, 2013), p. 85813Y.

F. Chollet and et al., “Keras: Deep learning library for theano and tensorflow,” URL: https://keras.io/k 7 (2015).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

D. Kingma and J. A. Ba, “A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).