Abstract

Phase-based OCT angiography of retinoblastoma regression patterns with a novel handheld 1050 nm clinical imaging system is demonstrated for the first time in children between 0 and 4 years old under general anesthesia. Angiography is mapped at OCT resolution by flow detection at every pixel with en-face projection from the volume between nerve fiber layer and retinal pigment epithelium. We show a striking difference between blood vasculature of healthy retina, and retinoblastoma regression patterns after chemotherapy, as well as varying complexity of abnormal vasculature in regression patterns types 2, 3, and 4. We demonstrate abnormal, tortuous and prominent vasculature in type 3 regression patterns having the highest risk of tumor recurrences and a lower probability to reduction into flat scars. The ability to visualize 3-D angiography might offer new insights in understanding of retinoblastoma development and its response to therapy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ergonomic handheld OCT angiography probe optimized for pediatric and supine imaging

Christian Viehland, Xi Chen, Du Tran-Viet, Moseph Jackson-Atogi, Pablo Ortiz, Gar Waterman, Lejla Vajzovic, Cynthia A. Toth, and Joseph A. Izatt
Biomed. Opt. Express 10(5) 2623-2638 (2019)

Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

Iwona Gorczynska, Justin V. Migacz, Robert J. Zawadzki, Arlie G. Capps, and John S. Werner
Biomed. Opt. Express 7(3) 911-942 (2016)

Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography

Anqi Zhang, Qinqin Zhang, and Ruikang K. Wang
Biomed. Opt. Express 6(10) 4130-4143 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
    [Crossref] [PubMed]
  2. C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
    [Crossref] [PubMed]
  3. C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
    [Crossref] [PubMed]
  4. M. Palamar, A. Thangappan, and C. L. Shields, “Evolution in regression patterns following chemoreduction for retinoblastoma,” Arch. Ophthalmol. 129(6), 727–730 (2011).
    [Crossref] [PubMed]
  5. F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
    [Crossref] [PubMed]
  6. B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
    [Crossref] [PubMed]
  7. K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
    [PubMed]
  8. O. Nadiarnykh, N. McNeill, F. D. Verbraak, A. C. Moll, and J. F. De Boer, “Diagnostic imaging of retinoblastoma in pediatric patients with a novel 1050nm optical coherence tomography clinical system,” Invest. Ophth. Vis. Sci. 58(8) (2017).
  9. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25(19), 1448–1450 (2000).
    [Crossref] [PubMed]
  10. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  11. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
    [Crossref] [PubMed]
  12. R. K. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express 15(18), 11402–11412 (2007).
    [Crossref] [PubMed]
  13. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [Crossref] [PubMed]
  14. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005).
    [Crossref] [PubMed]
  15. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [Crossref] [PubMed]
  16. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
    [Crossref] [PubMed]
  17. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
    [Crossref] [PubMed]
  18. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
    [Crossref] [PubMed]
  19. A. S. G. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express 1(4), 1047–1058 (2010).
    [Crossref] [PubMed]
  20. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [Crossref] [PubMed]
  21. V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
    [Crossref]
  22. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  23. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
    [Crossref] [PubMed]
  24. R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
    [Crossref] [PubMed]
  25. S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
    [Crossref] [PubMed]
  26. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2013).
    [Crossref] [PubMed]
  27. K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
    [Crossref] [PubMed]
  28. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
    [Crossref]
  29. C. Chen, W. Shi, and W. Gao, “Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,” J. Biomed. Opt. 20(11), 116009 (2015).
    [Crossref] [PubMed]
  30. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
    [Crossref] [PubMed]
  31. J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
    [Crossref] [PubMed]
  32. P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
    [Crossref] [PubMed]
  33. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]

2017 (1)

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

2016 (1)

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

2015 (3)

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

C. Chen, W. Shi, and W. Gao, “Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,” J. Biomed. Opt. 20(11), 116009 (2015).
[Crossref] [PubMed]

J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
[Crossref] [PubMed]

2013 (5)

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2013).
[Crossref] [PubMed]

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[Crossref] [PubMed]

2012 (2)

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref] [PubMed]

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

2011 (1)

M. Palamar, A. Thangappan, and C. L. Shields, “Evolution in regression patterns following chemoreduction for retinoblastoma,” Arch. Ophthalmol. 129(6), 727–730 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

2005 (4)

2003 (1)

2002 (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

2000 (2)

1997 (1)

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

1959 (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Abdillahi, H.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Adler, D. C.

Akkin, T.

Arathorn, D. W.

Azad, R.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Bajraszewski, T.

Bezemer, P. D.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Bouma, B.

Bouter, L. M.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Braaf, B.

Cable, A. E.

Ceklic, L.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Cense, B.

Chan, R.

Chawla, B.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Chen, C.

C. Chen, W. Shi, and W. Gao, “Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,” J. Biomed. Opt. 20(11), 116009 (2015).
[Crossref] [PubMed]

Chen, T.

Chen, Z.

Chen, Z. P.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Chiu, S. J.

Choi, W.

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Cotten, C. M.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

Das, C.

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

de Boer, J.

de Boer, J. F.

De Dzanet, S.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Den Otter, W.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Dijkstra, E. W.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Drexler, W.

Dufour, P. A.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Duker, J. S.

Faegh, A.

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

Farsiu, S.

Fercher, A.

Freedman, S.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

Gallie, B. L.

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

Gao, W.

C. Chen, W. Shi, and W. Gao, “Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,” J. Biomed. Opt. 20(11), 116009 (2015).
[Crossref] [PubMed]

Ghassemi, F.

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

Ghose, S.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Héon, E.

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

Hong, Y.

Hornegger, J.

Huang, D.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Huber, R.

Hurst, S.

Imhof, S. M.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Ishii, K.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

Iwata, H.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

Izatt, J. A.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25(19), 1448–1450 (2000).
[Crossref] [PubMed]

Jain, A.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Jayaraman, V.

Joo, C.

Karkhaneh, R.

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

Kolbitsch, C.

Koten, J. W.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Kowal, J.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Kraus, M. F.

Kuik, D. J.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Kuyt, B. P.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Leahey, A.

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Lee, E. C.

Leitgeb, R.

Leitgeb, R. A.

Lemij, H. G.

J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
[Crossref] [PubMed]

Li, X. T.

Lim, H.

Liu, J. J.

Lu, C. D.

MacKeen, L. D.

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

Makita, S.

Maldonado, R. S.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

Manalac, J.

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

Meadows, A. T.

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Mohan, V. K.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Mok, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Moll, A. C.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Mujat, M.

Nelson, J. S.

Nicholas, P.

Novosel, J.

J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
[Crossref] [PubMed]

Oshika, T.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

Palamar, M.

M. Palamar, A. Thangappan, and C. L. Shields, “Evolution in regression patterns following chemoreduction for retinoblastoma,” Arch. Ophthalmol. 129(6), 727–730 (2011).
[Crossref] [PubMed]

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Park, B.

Pierce, M. C.

Potsaid, B.

Pushker, N.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Qian, J.

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

Rahmanikhah, E.

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

Ramasubramanian, A.

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Rollins, A. M.

Roohipoor, R.

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

Roorda, A.

Saktanasate, J.

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

Sarin, N.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

Saxer, C.

Schmetterer, L.

Schmoll, T.

Schröder, S.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Seth, R.

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Sharma, P.

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Sheehy, C. K.

Shi, W.

C. Chen, W. Shi, and W. Gao, “Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,” J. Biomed. Opt. 20(11), 116009 (2015).
[Crossref] [PubMed]

Shields, C. L.

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

M. Palamar, A. Thangappan, and C. L. Shields, “Evolution in regression patterns following chemoreduction for retinoblastoma,” Arch. Ophthalmol. 129(6), 727–730 (2011).
[Crossref] [PubMed]

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Shields, J. A.

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

Singh, A. S. G.

Soliman, S. E.

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

Tan, K. E.

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Tearney, G.

Thangappan, A.

M. Palamar, A. Thangappan, and C. L. Shields, “Evolution in regression patterns following chemoreduction for retinoblastoma,” Arch. Ophthalmol. 129(6), 727–730 (2011).
[Crossref] [PubMed]

Thepass, G.

J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
[Crossref] [PubMed]

Tiruveedhula, P.

Toth, C. A.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Vakoc, B.

van Vliet, L. J.

J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
[Crossref] [PubMed]

VandenHoven, C.

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Vitkin, I. A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Wallace, D. K.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

Wang, R. K. K.

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Wolf-Schnurrbusch, U.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Xiang, S.

Xue, K.

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

Yamanari, M.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

Yang, Q.

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Yasuno, Y.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

Yatagai, T.

Yazdanfar, S.

Yuan, Y. F.

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

Yue, H.

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

Yun, S.

Yun, S. H.

Zawadzki, R.

Zhang, J.

Zhang, R.

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

Zhao, Y.

Zhao, Y. H.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Arch. Ophthalmol. (2)

C. L. Shields, M. Palamar, P. Sharma, A. Ramasubramanian, A. Leahey, A. T. Meadows, and J. A. Shields, “Retinoblastoma regression patterns following chemoreduction and adjuvant therapy in 557 tumors,” Arch. Ophthalmol. 127(3), 282–290 (2009).
[Crossref] [PubMed]

M. Palamar, A. Thangappan, and C. L. Shields, “Evolution in regression patterns following chemoreduction for retinoblastoma,” Arch. Ophthalmol. 129(6), 727–730 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Ophthalmol. (1)

A. C. Moll, D. J. Kuik, L. M. Bouter, W. Den Otter, P. D. Bezemer, J. W. Koten, S. M. Imhof, B. P. Kuyt, and K. E. Tan, “Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862-1995,” Br. J. Ophthalmol. 81(7), 559–562 (1997).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Indian J. Ophthalmol. (2)

C. L. Shields, J. Manalac, C. Das, J. Saktanasate, and J. A. Shields, “Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults,” Indian J. Ophthalmol. 63(2), 128–132 (2015).
[Crossref] [PubMed]

B. Chawla, A. Jain, R. Seth, R. Azad, V. K. Mohan, N. Pushker, and S. Ghose, “Clinical outcome and regression patterns of retinoblastoma treated with systemic chemoreduction and focal therapy: A prospective study,” Indian J. Ophthalmol. 64(7), 524–529 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Vis. Sci. 54(1), 771–777 (2013).
[Crossref] [PubMed]

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

C. Chen, W. Shi, and W. Gao, “Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,” J. Biomed. Opt. 20(11), 116009 (2015).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Med. Image Anal. (1)

J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L. J. van Vliet, “Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography,” Med. Image Anal. 26(1), 146–158 (2015).
[Crossref] [PubMed]

Numer. Math. (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Ophthalmology (1)

S. E. Soliman, C. VandenHoven, L. D. MacKeen, E. Héon, and B. L. Gallie, “Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management,” Ophthalmology 124(6), 859–872 (2017).
[Crossref] [PubMed]

Opt. Commun. (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Opt. Express (10)

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
[Crossref] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[Crossref] [PubMed]

R. K. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[Crossref] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005).
[Crossref] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

Opt. Lett. (3)

Pediatr. Blood Cancer (1)

F. Ghassemi, E. Rahmanikhah, R. Roohipoor, R. Karkhaneh, and A. Faegh, “Regression patterns in treated retinoblastoma with chemotherapy plus focal adjuvant therapy,” Pediatr. Blood Cancer 60(4), 599–604 (2013).
[Crossref] [PubMed]

Zhonghua Yan Ke Za Zhi (1)

K. Xue, J. Qian, H. Yue, Y. F. Yuan, and R. Zhang, “[Retinoblastoma regression patterns and results following chemo reduction and adjuvant therapy],” Zhonghua Yan Ke Za Zhi 48(7), 625–630 (2012).
[PubMed]

Other (1)

O. Nadiarnykh, N. McNeill, F. D. Verbraak, A. C. Moll, and J. F. De Boer, “Diagnostic imaging of retinoblastoma in pediatric patients with a novel 1050nm optical coherence tomography clinical system,” Invest. Ophth. Vis. Sci. 58(8) (2017).

Supplementary Material (1)

NameDescription
» Visualization 1       3D Angiography map for the patient case discussed in Fig. 5 and 6 reveals strikingly different blood vessels between the regression patterns type 2, 3, and 0.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Novel handheld OCT imaging system layout. A. OCT setup in a classic configuration with Fiber Bragg Grating (FBG) to generate optical trigger for every laser sweep, Mach-Zender interferometer, handheld module in the sample arm, and a dual-balanced detection. B. Ray-propagating model made with Zemax software illustrates focusing inside the patient’s eye with a tunable lens that changes curvature when an operator rotates the mechanical ring. C. Technical drawing of the handheld scanning module.
Fig. 2
Fig. 2 RB patient with Regression Pattern type 3 after four chemotherapy treatments. A. Fundus photo of the affected retina showing the region of interest imaged with OCT. B. A sample B-scan through the regression pattern. C. En-face projection created with the standard approach: summation of logarithmic data for every A-line enhances the contrast in small blood vessels. D. En-face projection from the proposed summation of OCT intensity values on a linear scale, then displayed in logarithmic scale. Calcifications are clearly visible here. The straight white lines correspond to the location of the B-Scan in panel B. Scale bars: 0.25 mm.
Fig. 3
Fig. 3 Left: Two example B-scans of an RB-affected retina with regression pattern type 3 showing segmented upper surface (red line) and RPE layer (blue line). Scale bars: 0.25 mm. Right: Corresponding maps of phase differences in radians for every pixel in the OCT image. Note the regions with high phase differences corresponding to strong blow flow. The choroid region below RPE exhibits non-static pixels throughout the volume.
Fig. 4
Fig. 4 Angiography image of an RB patient with regression pattern type 3, B-scans and segmentation discussed in Fig. 3. Left panel: Angiographic projection over the volume between upper surface and the depth of 90 µm below. Right panel: Angiographic projection from the full volume between the upper surface and the RPE. The white arrow points to an abnormally dense network of blood vessels within the regression pattern. Notice that most of the abnormal blood vessels are not present within the upper layer of the regression pattern. Scale bars: 0.25 mm.
Fig. 5
Fig. 5 Regression patterns of type 2 on top of the optic nerve (blue arrows), and 3 elsewhere in the image in the first follow-up after systemic chemotherapy. Left panel: Fundus photo with the region of interest probed with Doppler OCT. Right panel: en-face projection from the intensity OCT.
Fig. 6
Fig. 6 Angiography map reveals three different regions based on blood vessels network (left panel) Right panels: Intensity B-scans along the orange (type 3) and blue (type 2) lines drawn on the angiography map. (Visualization 1).
Fig. 7
Fig. 7 Abnormal vasculature network in a big mass of regression pattern type 3 at the first follow-up visit after 5 chemotherapy cycles. B-scan (top panel) is shown along the white line. Scale bars: 0.25 mm.
Fig. 8
Fig. 8 Flat scar regression pattern type 4 after 11 cycles of chemotherapy and a laser treatment: B-scan (top); Angiography (below) shows only two major blood vessels crossing the area of athrophic tissue. Scale bars: 0.25 mm.
Fig. 9
Fig. 9 Follow-up OCT images: RB patient after 11x chemotherapy (4x carbopatin, 7x VEC), laser and cryotherapy. A. En-face projection with the location of a sample B-scan indicated by a white line. B. Structural OCT B-scan along the white line in panels A, C, and D shows a flat scar in the center (regression pattern type 4) and abnormal mass on the right (regression pattern type 2). C and D. Angiography OCT projections from the layer 60 µm deep starting from the top surface, and from the full depth between the top surface and RPE, respectively. Notice only the major throughput blood vessels are present in the flat scar (type 4) region, and very few remaining blood vessels in the regression pattern type 2 on the right. Scale bars: 0.25 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ= 4nπτ v flow λ 0 cos(α)

Metrics