Abstract

We present in this work a numerical model for characterizing the scattering properties of the human lens. After analyzing the scattering properties of two main scattering particles actually described in the literature through FEM (finite element method) simulations, we have modified a Monte Carlo’s bulk scattering algorithm for computing ray scattering in non-sequential ray tracing. We have implemented this ray scattering algorithm in a layered model of the human lens in order to calculate the scattering properties of the whole lens. We have tested our algorithm by simulating the classic experiment carried out by Van der Berg et al for measuring “in vitro” the angular distribution of forward scattered light by the human lens. The results show the ability of our model to simulate accurately the scattering properties of the human lens.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation

Ben Aernouts, Rodrigo Watté, Robbe Van Beers, Filip Delport, Martine Merchiers, Jan De Block, Jeroen Lammertyn, and Wouter Saeys
Opt. Express 22(17) 20223-20238 (2014)

Computational model of the effect of light scattering from cataracts in the human eye

Ismael Kelly-Pérez, Neil C. Bruce, Luis R. Berriel-Valdos, Annette Werner, and José A. Delgado Atencio
J. Opt. Soc. Am. A 30(12) 2585-2594 (2013)

Effective Mie scattering of a spherical fractal aggregate and its application in turbid media

Xiaoyuan Deng, Xiaosong Gan, and Min Gu
Appl. Opt. 43(14) 2925-2929 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
    [Crossref] [PubMed]
  2. B. Philipson, “Distribution of protein within the normal rat lens,” Invest. Ophthalmol. 8(3), 258–270 (1969).
    [PubMed]
  3. P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens - the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
    [Crossref] [PubMed]
  4. T. J. T. P. van den Berg, “Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp,” Ophthalmic Physiol. Opt. 38(1), 6–25 (2018).
    [Crossref] [PubMed]
  5. F. A. Bettelheim and M. Paunovic, “Light scattering of normal human lens I: Application of random fluctuation and orientation theory,” Biophys. J. 26, 85–100 (1979).
    [Crossref] [PubMed]
  6. E. L. Siew, D. Opalecky, and F. A. Bettelheim, “Light scattering of normal human lens. II. Age dependence of the light scattering parameters,” Exp. Eye Res. 33(6), 603–614 (1981).
    [Crossref] [PubMed]
  7. E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
    [PubMed]
  8. T. J. Van den Berg and J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35(1), 169–177 (1995).
    [Crossref] [PubMed]
  9. T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
    [Crossref] [PubMed]
  10. K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
    [PubMed]
  11. M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
    [Crossref] [PubMed]
  12. K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
    [PubMed]
  13. E. M. Méndez-Aguilar, I. Kelly-Pérez, L. R. Berriel-Valdos, and J. A. Delgado-Atencio, “Simulation and analysis of light scattering by multilamellar bodies present in the human eye,” Biomed. Opt. Express 8(6), 3029–3044 (2017).
    [Crossref] [PubMed]
  14. S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
    [Crossref] [PubMed]
  15. R. J. W. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80(5), 709–725 (2005).
    [Crossref] [PubMed]
  16. L. Acosta-Sampson and J. King, “Partially folded aggregation intermediates of human γD-, γC-, and γS-Crystallin are recognized and bound by human αB-Crystallin chaperone,” J. Mol. Biol. 401(1), 134–152 (2010).
    [Crossref] [PubMed]
  17. A. Spector and D. Roy, “Disulfide-linked high molecular weight protein associated with human cataract,” Proc. Natl. Acad. Sci. U.S.A. 75(7), 3244–3248 (1978).
    [Crossref] [PubMed]
  18. R. J. W. Truscott and R. C. Augusteyn, “Changes in human lens proteins during nuclear cataract formation,” Exp. Eye Res. 24(2), 159–170 (1977).
    [Crossref] [PubMed]
  19. G. B. Benedek, “Theory of transparency of the eye,” Appl. Opt. 10(3), 459–473 (1971).
    [Crossref] [PubMed]
  20. G. B. Benedek, “Cataract as a protein condensation disease: the Proctor Lecture,” Invest. Ophthalmol. Vis. Sci. 38(10), 1911–1921 (1997).
    [PubMed]
  21. A. P. Bruckner, “Picosecond light scattering measurements of cataract microstructure,” Appl. Opt. 17(19), 3177–3183 (1978).
    [Crossref] [PubMed]
  22. H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
    [Crossref] [PubMed]
  23. K. K. Sharma and P. Santhoshkumar, “Lens aging: Effects of Crystallins,” Biochim. Biophys. Acta 1790(10), 1095–1108 (2009).
    [Crossref] [PubMed]
  24. S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
    [Crossref] [PubMed]
  25. J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
    [Crossref] [PubMed]
  26. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  27. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  29. A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-Plasmonic Transition in Optically resonant Bismuth nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters,” IEEE Photonics J. 8(3), 4801811 (2016).
    [Crossref]
  30. A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
    [Crossref]
  31. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE, 2010).
  32. A. Doicu, Th. Wriedt, and Y. A. Eremein, Light Scattering by Systems of Particles, Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).
  33. V. Valery Tuchin, Tissue Optics, Light Scattering Methods and Instruments for Medical Diagnostics (SPIE, 2015)
  34. C. John, Stover Optical Scattering: Measurement and Analysis (SPIE, 2012)
  35. F. A. Bettelheim and S. Ali, “Light scattering of normal human lens. III. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41(1), 1–9 (1985).
    [Crossref] [PubMed]
  36. B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
    [Crossref]
  37. S. Gandadhara, “How to Create a User-Defined Scattering Function,” (Zemax Knowledge base, 2008) http://customers.zemax.com/os/resources/learn/knowledgebase/how-to-create-a-user-defined-scattering-function
  38. J. M. P. Coelho, J. Freitas, and C. A. Williamson, “Optical eye simulator for laser dazzle events,” Appl. Opt. 55(9), 2240–2251 (2016).
    [Crossref] [PubMed]
  39. N. Pfeiffer and G. H. Chapman, “Successive order, multiple scattering of two-term Henyey-Greenstein phase functions,” Opt. Express 16(18), 13637–13642 (2008).
    [Crossref] [PubMed]
  40. K. Nam-Hyong, “How to create complex non-sequential objects,” (Zemax Knowledge base, 2005) http://customers.zemax.com/os/resources/learn/knowledgebase/how-to-create-complex-non-sequential-objects?lang=en-US
  41. R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24(8), 2175–2185 (2007).
    [Crossref] [PubMed]

2018 (1)

T. J. T. P. van den Berg, “Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp,” Ophthalmic Physiol. Opt. 38(1), 6–25 (2018).
[Crossref] [PubMed]

2017 (3)

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

E. M. Méndez-Aguilar, I. Kelly-Pérez, L. R. Berriel-Valdos, and J. A. Delgado-Atencio, “Simulation and analysis of light scattering by multilamellar bodies present in the human eye,” Biomed. Opt. Express 8(6), 3029–3044 (2017).
[Crossref] [PubMed]

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

2016 (3)

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-Plasmonic Transition in Optically resonant Bismuth nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters,” IEEE Photonics J. 8(3), 4801811 (2016).
[Crossref]

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

J. M. P. Coelho, J. Freitas, and C. A. Williamson, “Optical eye simulator for laser dazzle events,” Appl. Opt. 55(9), 2240–2251 (2016).
[Crossref] [PubMed]

2015 (1)

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

2013 (1)

S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
[Crossref] [PubMed]

2011 (1)

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

2010 (1)

L. Acosta-Sampson and J. King, “Partially folded aggregation intermediates of human γD-, γC-, and γS-Crystallin are recognized and bound by human αB-Crystallin chaperone,” J. Mol. Biol. 401(1), 134–152 (2010).
[Crossref] [PubMed]

2009 (1)

K. K. Sharma and P. Santhoshkumar, “Lens aging: Effects of Crystallins,” Biochim. Biophys. Acta 1790(10), 1095–1108 (2009).
[Crossref] [PubMed]

2008 (2)

N. Pfeiffer and G. H. Chapman, “Successive order, multiple scattering of two-term Henyey-Greenstein phase functions,” Opt. Express 16(18), 13637–13642 (2008).
[Crossref] [PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

2007 (2)

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24(8), 2175–2185 (2007).
[Crossref] [PubMed]

2005 (1)

R. J. W. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80(5), 709–725 (2005).
[Crossref] [PubMed]

2004 (1)

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

2001 (1)

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

1999 (1)

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

1997 (1)

G. B. Benedek, “Cataract as a protein condensation disease: the Proctor Lecture,” Invest. Ophthalmol. Vis. Sci. 38(10), 1911–1921 (1997).
[PubMed]

1995 (1)

T. J. Van den Berg and J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35(1), 169–177 (1995).
[Crossref] [PubMed]

1985 (1)

F. A. Bettelheim and S. Ali, “Light scattering of normal human lens. III. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41(1), 1–9 (1985).
[Crossref] [PubMed]

1981 (3)

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens - the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref] [PubMed]

E. L. Siew, D. Opalecky, and F. A. Bettelheim, “Light scattering of normal human lens. II. Age dependence of the light scattering parameters,” Exp. Eye Res. 33(6), 603–614 (1981).
[Crossref] [PubMed]

E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
[PubMed]

1979 (1)

F. A. Bettelheim and M. Paunovic, “Light scattering of normal human lens I: Application of random fluctuation and orientation theory,” Biophys. J. 26, 85–100 (1979).
[Crossref] [PubMed]

1978 (2)

A. Spector and D. Roy, “Disulfide-linked high molecular weight protein associated with human cataract,” Proc. Natl. Acad. Sci. U.S.A. 75(7), 3244–3248 (1978).
[Crossref] [PubMed]

A. P. Bruckner, “Picosecond light scattering measurements of cataract microstructure,” Appl. Opt. 17(19), 3177–3183 (1978).
[Crossref] [PubMed]

1977 (1)

R. J. W. Truscott and R. C. Augusteyn, “Changes in human lens proteins during nuclear cataract formation,” Exp. Eye Res. 24(2), 159–170 (1977).
[Crossref] [PubMed]

1971 (1)

1969 (1)

B. Philipson, “Distribution of protein within the normal rat lens,” Invest. Ophthalmol. 8(3), 258–270 (1969).
[PubMed]

Acosta-Sampson, L.

L. Acosta-Sampson and J. King, “Partially folded aggregation intermediates of human γD-, γC-, and γS-Crystallin are recognized and bound by human αB-Crystallin chaperone,” J. Mol. Biol. 401(1), 134–152 (2010).
[Crossref] [PubMed]

Alda, J.

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

Algorri, F.

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Ali, S.

F. A. Bettelheim and S. Ali, “Light scattering of normal human lens. III. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41(1), 1–9 (1985).
[Crossref] [PubMed]

Augusteyn, R. C.

R. J. W. Truscott and R. C. Augusteyn, “Changes in human lens proteins during nuclear cataract formation,” Exp. Eye Res. 24(2), 159–170 (1977).
[Crossref] [PubMed]

Balasubramanian, D.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Bassnett, S.

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

Benedek, G. B.

G. B. Benedek, “Cataract as a protein condensation disease: the Proctor Lecture,” Invest. Ophthalmol. Vis. Sci. 38(10), 1911–1921 (1997).
[PubMed]

G. B. Benedek, “Theory of transparency of the eye,” Appl. Opt. 10(3), 459–473 (1971).
[Crossref] [PubMed]

Berriel-Valdos, L. R.

Bettelheim, F. A.

F. A. Bettelheim and S. Ali, “Light scattering of normal human lens. III. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41(1), 1–9 (1985).
[Crossref] [PubMed]

E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
[PubMed]

E. L. Siew, D. Opalecky, and F. A. Bettelheim, “Light scattering of normal human lens. II. Age dependence of the light scattering parameters,” Exp. Eye Res. 33(6), 603–614 (1981).
[Crossref] [PubMed]

F. A. Bettelheim and M. Paunovic, “Light scattering of normal human lens I: Application of random fluctuation and orientation theory,” Biophys. J. 26, 85–100 (1979).
[Crossref] [PubMed]

Bloemendal, H.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Boatz, J. C.

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

Bruckner, A. P.

Chapman, G. H.

Chylack, L. T.

E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
[PubMed]

Coelho, J. M. P.

Costello, M. J.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

Cuadrado, A.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-Plasmonic Transition in Optically resonant Bismuth nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters,” IEEE Photonics J. 8(3), 4801811 (2016).
[Crossref]

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

de Jong, W.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Decatur, S. M.

S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
[Crossref] [PubMed]

Delgado-Atencio, J. A.

Donaldson, P. J.

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

Fagerholm, P. P.

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens - the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref] [PubMed]

Fowler, W. C.

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

Freel, C. D.

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

Freitas, J.

García-Cámara, B.

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Gilliland, K. O.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

González, F. J.

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

González, L.

Grey, A. C.

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

Gronenborn, A. M.

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

Ijspeert, J. K.

T. J. Van den Berg and J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35(1), 169–177 (1995).
[Crossref] [PubMed]

Jaenicke, R.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Johnsen, S.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

Kelly-Pérez, I.

King, J.

L. Acosta-Sampson and J. King, “Partially folded aggregation intermediates of human γD-, γC-, and γS-Crystallin are recognized and bound by human αB-Crystallin chaperone,” J. Mol. Biol. 401(1), 134–152 (2010).
[Crossref] [PubMed]

Krishna, P. V.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Lane, C. W.

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

Li, M.

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

Lim, J. C.

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

Lindström, B.

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens - the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref] [PubMed]

Lubsen, N. H.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Maceo Heilman, B.

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

Méndez-Aguilar, E. M.

Metlapally, S.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Moran, S. D.

S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
[Crossref] [PubMed]

Navarro, R.

Opalecky, D.

E. L. Siew, D. Opalecky, and F. A. Bettelheim, “Light scattering of normal human lens. II. Age dependence of the light scattering parameters,” Exp. Eye Res. 33(6), 603–614 (1981).
[Crossref] [PubMed]

Palos, F.

Paunovic, M.

F. A. Bettelheim and M. Paunovic, “Light scattering of normal human lens I: Application of random fluctuation and orientation theory,” Biophys. J. 26, 85–100 (1979).
[Crossref] [PubMed]

Pfeiffer, N.

Philipson, B.

B. Philipson, “Distribution of protein within the normal rat lens,” Invest. Ophthalmol. 8(3), 258–270 (1969).
[PubMed]

Philipson, B. T.

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens - the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref] [PubMed]

Ramamurthy, B.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Roy, D.

A. Spector and D. Roy, “Disulfide-linked high molecular weight protein associated with human cataract,” Proc. Natl. Acad. Sci. U.S.A. 75(7), 3244–3248 (1978).
[Crossref] [PubMed]

Sánchez-Pena, J. M.

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Santhoshkumar, P.

K. K. Sharma and P. Santhoshkumar, “Lens aging: Effects of Crystallins,” Biochim. Biophys. Acta 1790(10), 1095–1108 (2009).
[Crossref] [PubMed]

Serna, R.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-Plasmonic Transition in Optically resonant Bismuth nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters,” IEEE Photonics J. 8(3), 4801811 (2016).
[Crossref]

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Sharma, K. K.

K. K. Sharma and P. Santhoshkumar, “Lens aging: Effects of Crystallins,” Biochim. Biophys. Acta 1790(10), 1095–1108 (2009).
[Crossref] [PubMed]

Shi, Y.

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

Siew, E. L.

E. L. Siew, D. Opalecky, and F. A. Bettelheim, “Light scattering of normal human lens. II. Age dependence of the light scattering parameters,” Exp. Eye Res. 33(6), 603–614 (1981).
[Crossref] [PubMed]

E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
[PubMed]

Slingsby, C.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Spector, A.

A. Spector and D. Roy, “Disulfide-linked high molecular weight protein associated with human cataract,” Proc. Natl. Acad. Sci. U.S.A. 75(7), 3244–3248 (1978).
[Crossref] [PubMed]

Spekreijse, H.

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

Tardieu, A.

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Toudert, J.

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-Plasmonic Transition in Optically resonant Bismuth nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters,” IEEE Photonics J. 8(3), 4801811 (2016).
[Crossref]

Truscott, R. J. W.

R. J. W. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80(5), 709–725 (2005).
[Crossref] [PubMed]

R. J. W. Truscott and R. C. Augusteyn, “Changes in human lens proteins during nuclear cataract formation,” Exp. Eye Res. 24(2), 159–170 (1977).
[Crossref] [PubMed]

Tung, W. H.

E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
[PubMed]

Urruchi, V.

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Vaghefi, E.

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

van den Berg, T. J.

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

T. J. Van den Berg and J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35(1), 169–177 (1995).
[Crossref] [PubMed]

van den Berg, T. J. T. P.

T. J. T. P. van den Berg, “Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp,” Ophthalmic Physiol. Opt. 38(1), 6–25 (2018).
[Crossref] [PubMed]

van der Wel, P. C. A.

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

Vergaz, R.

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Vrensen, G. F. J. M.

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

Whitley, M. J.

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

Williamson, C. A.

Zanni, M. T.

S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
[Crossref] [PubMed]

Zhang, T. O.

S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Biochemistry (1)

S. D. Moran, T. O. Zhang, S. M. Decatur, and M. T. Zanni, “Amyloid Fiber Formation in Human γD-Crystallin Induced by UV-B Photodamage,” Biochemistry 52(36), 6169–6181 (2013).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

K. K. Sharma and P. Santhoshkumar, “Lens aging: Effects of Crystallins,” Biochim. Biophys. Acta 1790(10), 1095–1108 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

F. A. Bettelheim and M. Paunovic, “Light scattering of normal human lens I: Application of random fluctuation and orientation theory,” Biophys. J. 26, 85–100 (1979).
[Crossref] [PubMed]

Exp. Eye Res. (5)

E. L. Siew, D. Opalecky, and F. A. Bettelheim, “Light scattering of normal human lens. II. Age dependence of the light scattering parameters,” Exp. Eye Res. 33(6), 603–614 (1981).
[Crossref] [PubMed]

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens - the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref] [PubMed]

R. J. W. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80(5), 709–725 (2005).
[Crossref] [PubMed]

R. J. W. Truscott and R. C. Augusteyn, “Changes in human lens proteins during nuclear cataract formation,” Exp. Eye Res. 24(2), 159–170 (1977).
[Crossref] [PubMed]

F. A. Bettelheim and S. Ali, “Light scattering of normal human lens. III. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41(1), 1–9 (1985).
[Crossref] [PubMed]

IEEE Photonics J. (1)

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-Plasmonic Transition in Optically resonant Bismuth nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters,” IEEE Photonics J. 8(3), 4801811 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Cuadrado, J. Toudert, B. García-Cámara, R. Vergaz, F. J. González, J. Alda, and R. Serna, “Optical tuning of nanospheres through phase transition: An optical nanocircuit analysis,” IEEE Photonics Technol. Lett. 28(24), 2878–2881 (2016).
[Crossref]

Invest. Ophthalmol. (1)

B. Philipson, “Distribution of protein within the normal rat lens,” Invest. Ophthalmol. 8(3), 258–270 (1969).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

E. L. Siew, F. A. Bettelheim, L. T. Chylack, and W. H. Tung, “Studies on human cataracts. II. Correlation between the clinical description and the light-scattering parameters of human cataracts,” Invest. Ophthalmol. Vis. Sci. 20(3), 334–347 (1981).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48(1), 303–312 (2007).
[Crossref] [PubMed]

G. B. Benedek, “Cataract as a protein condensation disease: the Proctor Lecture,” Invest. Ophthalmol. Vis. Sci. 38(10), 1911–1921 (1997).
[PubMed]

J. Mol. Biol. (1)

L. Acosta-Sampson and J. King, “Partially folded aggregation intermediates of human γD-, γC-, and γS-Crystallin are recognized and bound by human αB-Crystallin chaperone,” J. Mol. Biol. 401(1), 134–152 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

B. García-Cámara, F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical nanometric switch based on the directional scattering of semiconductor nanoparticle,” J. Phys. Chem. C 199(33), 19558–19564 (2015).
[Crossref]

Mol. Vis. (2)

K. O. Gilliland, C. D. Freel, C. W. Lane, W. C. Fowler, and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
[PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Nat. Commun. (1)

J. C. Boatz, M. J. Whitley, M. Li, A. M. Gronenborn, and P. C. A. van der Wel, “Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH,” Nat. Commun. 8, 15137 (2017).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

T. J. T. P. van den Berg, “Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp,” Ophthalmic Physiol. Opt. 38(1), 6–25 (2018).
[Crossref] [PubMed]

Opt. Express (1)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Spector and D. Roy, “Disulfide-linked high molecular weight protein associated with human cataract,” Proc. Natl. Acad. Sci. U.S.A. 75(7), 3244–3248 (1978).
[Crossref] [PubMed]

Prog. Biophys. Mol. Biol. (1)

H. Bloemendal, W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu, “Ageing and vision: structure, stability and function of lens crystallins,” Prog. Biophys. Mol. Biol. 86(3), 407–485 (2004).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

P. J. Donaldson, A. C. Grey, B. Maceo Heilman, J. C. Lim, and E. Vaghefi, “The physiological optics of the lens,” Prog. Retin. Eye Res. 56, e1–e24 (2017).
[Crossref] [PubMed]

Vision Res. (2)

T. J. Van den Berg and J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35(1), 169–177 (1995).
[Crossref] [PubMed]

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

Other (9)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

K. Nam-Hyong, “How to create complex non-sequential objects,” (Zemax Knowledge base, 2005) http://customers.zemax.com/os/resources/learn/knowledgebase/how-to-create-complex-non-sequential-objects?lang=en-US

S. Gandadhara, “How to Create a User-Defined Scattering Function,” (Zemax Knowledge base, 2008) http://customers.zemax.com/os/resources/learn/knowledgebase/how-to-create-a-user-defined-scattering-function

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE, 2010).

A. Doicu, Th. Wriedt, and Y. A. Eremein, Light Scattering by Systems of Particles, Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

V. Valery Tuchin, Tissue Optics, Light Scattering Methods and Instruments for Medical Diagnostics (SPIE, 2015)

C. John, Stover Optical Scattering: Measurement and Analysis (SPIE, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Near field distribution of the scattered electric vector modulus for a spherical cluster (refractive index n c =1.55), embedded in a medium with a protein concentration c=0.1 (corresponding to a refractive index n=1.359), for cluster radius of (a) 25, (b) 75 and (c) 150 nm, respectively. The arrow indicates the direction of the incident field. In the insets, we have represented the far field distribution for the same cluster radius. (d) Scattering cross-section of a cluster as a function of the cluster radius, for different values of the protein concentration of the surrounding medium. (e) Coefficient of asymmetry, g, as a function of the cluster radius for two extreme values ( c=0.1,0.5) of protein concentration.
Fig. 2
Fig. 2 Near field modulus of the electric vector corresponding to a vesicle of (a) 500 nm radius, (b) 1800 nm radius, both with a shell 50 nm thick computed for protein concentrations of c=0.5. The arrows indicate the direction of the incident field. The far field pattern modulus is also displayed (see insets). (c) Scattering cross-section of vesicles as a function of the vesicle radius. (d) Asymmetry coefficient as a function of vesicle radius for different protein concentrations.
Fig. 3
Fig. 3 Layered model for the human lens based in Navarro’s index model for (a) a 24-year-old subject and (b) an 80-year-old subject. Notice the difference in curvature and thickness of both lenses and the different distribution of the iso-indical curves.
Fig. 4
Fig. 4 (a) Simulation of Van der Berg and Ijspeert experiment in Zemax using our layered human lens model. The elements of the simulation are a lens located within a cylindrical holder (see inset), a point source and a semispherical polar detector with a radius of 550 mm, which simulates the mobile detector used in the actual experiment. (b) Amplified image of a section of the human lens placed into the cylindrical holder. The different layers of the human lens can be readily seen in this image. Compare with the drawing of the original experiment (see Fig. 1 of reference [8])
Fig. 5
Fig. 5 Angular distribution of the scattered light for different values of the vesicle concentration. The average cluster radius r 0 are: (a) r 0 =20, (b) r 0 =60 and (c) r 0 =100 nm. For all these plots, the cluster distance d 0 is 1200 nm. The age of the lens is 80 years.
Fig. 6
Fig. 6 Angular distribution of the normalized radiant intensity corresponding to the data measured by Van der Berg and Ijspeert [8] (blue) and the fitting of our model to this data (red) for both (a) a normal 24-year-old and (b) a cataractous 80-year-old eye. The plots show a good fitting between experimental data and our model.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n(c)=( 1c ) n w +c n p
σ s ( c )= 1 I 0 S s ( c ) ndA
g( c )= 1 σ s I 0 S s ( c )ncosθdA
μ s ( c )= σ s ( c )N,
p( θ )= 1 g 2 4π( 1+ g 2 2gcosθ ) ,
c= n n w n p n w ,
n ant ( z,ω )= n 0 + δ n ( 1 1 f ant ( z 2 2 Δ ant z a ant 2 + ant ω 2 b ant 2 ) ) p for( z ant , ω ant )( z,ω )( z i , ω i ), n pos ( z,ω )= n 0 + δ n ( 1 1 f pos ( z 2 t ant 2 2 Δ pos ( z t ant ) a pos 2 + pos ω 2 b pos 2 ) ) p for( z i , ω i )( z,ω )( z pos , ω pos ),
z( ω )= z 0 + κ ω 2 1+ 1( 1+Q ) κ 2 ω 2 ,
r c ( z )= r 0 ( 1+ β 1 cosωz+ β 2 sinωz )
d( z )= d 0 ( 1+ α 1 z+ α 2 z 2 + α 3 z 3 ),
T= 0 π/2 I( θ ) sinθdθ 0 π/2 F( θ ) sinθdθ

Metrics