Abstract

Accurate cholesterol level measurement plays an important role in the diagnosis of severe diseases such as cardiovascular diseases, hypertension, anemia, myxedemia, hyperthyroidism, coronary artery illness. Traditionally, electrochemical sensors have been employed to detect the cholesterol level. However, these sensors have limitations in terms of sensitivity and selectivity. In this paper, a localized surface plasmon resonance (LSPR) -based biosensor is demonstrated that accurately detects and measures the concentration of cholesterol. In the present study, a tapered optical fiber-based sensor probe is developed using gold nanoparticles (AuNPs) and cholesterol oxidase (ChOx) to increase the sensitivity and selectivity of the sensor. Synthesized AuNPs were characterized by UV-visible spectrophotometer, transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDS). Further, coating of AuNPs over fiber was confirmed by scanning electron microscope (SEM). The developed sensor demonstrates for a clinically important cholesterol range of 0 to 10 mM, and the limit of detection is found to be 53.1 nM.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Yong Liu, Mingfu Zhao, and Lin Zhang
Opt. Express 23(25) 32429-32440 (2015)

Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes

Volodymyr B. Koman, Christian Santschi, and Olivier J. F. Martin
Biomed. Opt. Express 6(7) 2353-2365 (2015)

Tapered optical fiber sensor based on localized surface plasmon resonance

Hsing-Ying Lin, Chen-Han Huang, Gia-Ling Cheng, Nan-Kuang Chen, and Hsiang-Chen Chui
Opt. Express 20(19) 21693-21701 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Whirledge and J. A. Cidlowski, “Chapter 5 - Steroid Hormone Action,” in Yen and Jaffe's Reproductive Endocrinology (Eighth Edition), J. F. Strauss and R. L. Barbieri, eds. (Content Repository Only! Philadelphia, 2019), pp. 115–131.e114.
  2. R. K. Mishra and R. Rajakumari, “Chapter 1 - Nanobiosensors for Biomedical Application: Present and Future Prospects,” in Characterization and Biology of Nanomaterials for Drug Delivery, S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, and S. Thomas, eds. (Elsevier, 2019), pp. 1–23.
  3. S. K. Arya, M. Datta, and B. D. Malhotra, “Recent advances in cholesterol biosensor,” Biosens. Bioelectron. 23(7), 1083–1100 (2008).
    [Crossref] [PubMed]
  4. N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
    [Crossref] [PubMed]
  5. J. Hassanzadeh, A. Khataee, and H. Eskandari, “Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol,” Sens. Actuators B Chem. 259, 402–410 (2018).
    [Crossref]
  6. U. Saxena and A. B. Das, “Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches,” Biosens. Bioelectron. 75, 196–205 (2016).
    [Crossref] [PubMed]
  7. A. Nezhadali, Z. Es’haghi, and A.-D. Khatibi, “Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography,” Food Anal. Methods 10(5), 1397–1407 (2017).
    [Crossref]
  8. R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
    [Crossref]
  9. G. Kaur, M. Tomar, and V. Gupta, “Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring,” Sens. Actuators B Chem. 261, 460–466 (2018).
    [Crossref]
  10. K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
    [Crossref]
  11. T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
    [Crossref]
  12. T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
    [Crossref]
  13. R. K. Satvekar and S. H. Pawar, “Multienzymatic Cholesterol Nanobiosensor Using Core–Shell Nanoparticles Incorporated Silica Nanocomposite,” J. Med. Biol. Eng. 38(5), 735–743 (2018).
    [Crossref]
  14. M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).
  15. M. Budiyanto and M. Yasin, “Cholesterol detection using optical fiber sensor based on intensity modulation,” J. Phys. Conf. Ser. 853, 012008 (2017).
    [Crossref]
  16. S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: A review,” Biotechnol. Adv. 30(3), 512–523 (2012).
    [Crossref] [PubMed]
  17. M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
    [Crossref] [PubMed]
  18. A. Hosoki, M. Nishiyama, and K. Watanabe, “Localized surface plasmon sensor based on gold island films using a hetero-core structured optical fiber,” Appl. Opt. 56(23), 6673–6679 (2017).
    [Crossref] [PubMed]
  19. H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref] [PubMed]
  20. N. R. Nirala, P. S. Saxena, and A. Srivastava, “Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 506–512 (2018).
    [Crossref] [PubMed]
  21. H. Lin, M. Li, L. Ding, and J. Huang, “A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose,” Appl. Biochem. Biotechnol., 1–12 (2018).
  22. J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
    [Crossref] [PubMed]
  23. U. Saxena, M. Chakraborty, and P. Goswami, “Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples,” Biosens. Bioelectron. 26(6), 3037–3043 (2011).
    [Crossref] [PubMed]
  24. V. Semwal, A. M. Shrivastav, and B. D. Gupta, “SPR Based Fiber Optic Sensor for Detection of Cholesterol Using Gel Entrapment,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT3C.7.
  25. V. Semwal and B. D. Gupta, “LSPR- and SPR-Based Fiber-Optic Cholesterol Sensor Using Immobilization of Cholesterol Oxidase Over Silver Nanoparticles Coated Graphene Oxide Nanosheets,” IEEE Sens. J. 18(3), 1039–1046 (2018).
    [Crossref]

2018 (8)

J. Hassanzadeh, A. Khataee, and H. Eskandari, “Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol,” Sens. Actuators B Chem. 259, 402–410 (2018).
[Crossref]

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

G. Kaur, M. Tomar, and V. Gupta, “Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring,” Sens. Actuators B Chem. 261, 460–466 (2018).
[Crossref]

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

R. K. Satvekar and S. H. Pawar, “Multienzymatic Cholesterol Nanobiosensor Using Core–Shell Nanoparticles Incorporated Silica Nanocomposite,” J. Med. Biol. Eng. 38(5), 735–743 (2018).
[Crossref]

M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).

N. R. Nirala, P. S. Saxena, and A. Srivastava, “Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 506–512 (2018).
[Crossref] [PubMed]

V. Semwal and B. D. Gupta, “LSPR- and SPR-Based Fiber-Optic Cholesterol Sensor Using Immobilization of Cholesterol Oxidase Over Silver Nanoparticles Coated Graphene Oxide Nanosheets,” IEEE Sens. J. 18(3), 1039–1046 (2018).
[Crossref]

2017 (5)

A. Nezhadali, Z. Es’haghi, and A.-D. Khatibi, “Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography,” Food Anal. Methods 10(5), 1397–1407 (2017).
[Crossref]

A. Hosoki, M. Nishiyama, and K. Watanabe, “Localized surface plasmon sensor based on gold island films using a hetero-core structured optical fiber,” Appl. Opt. 56(23), 6673–6679 (2017).
[Crossref] [PubMed]

M. Budiyanto and M. Yasin, “Cholesterol detection using optical fiber sensor based on intensity modulation,” J. Phys. Conf. Ser. 853, 012008 (2017).
[Crossref]

K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
[Crossref]

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

2016 (1)

U. Saxena and A. B. Das, “Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches,” Biosens. Bioelectron. 75, 196–205 (2016).
[Crossref] [PubMed]

2015 (1)

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

2014 (1)

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

2012 (2)

H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref] [PubMed]

S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: A review,” Biotechnol. Adv. 30(3), 512–523 (2012).
[Crossref] [PubMed]

2011 (2)

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
[Crossref] [PubMed]

U. Saxena, M. Chakraborty, and P. Goswami, “Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples,” Biosens. Bioelectron. 26(6), 3037–3043 (2011).
[Crossref] [PubMed]

2008 (1)

S. K. Arya, M. Datta, and B. D. Malhotra, “Recent advances in cholesterol biosensor,” Biosens. Bioelectron. 23(7), 1083–1100 (2008).
[Crossref] [PubMed]

Alpas, H.

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

Anh, T. T. N.

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

Ansari, S. A.

S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: A review,” Biotechnol. Adv. 30(3), 512–523 (2012).
[Crossref] [PubMed]

Arya, S. K.

S. K. Arya, M. Datta, and B. D. Malhotra, “Recent advances in cholesterol biosensor,” Biosens. Bioelectron. 23(7), 1083–1100 (2008).
[Crossref] [PubMed]

Bairey Merz, C. N.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Barba, F. J.

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

Blum, C. B.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Budiyanto, M.

M. Budiyanto and M. Yasin, “Cholesterol detection using optical fiber sensor based on intensity modulation,” J. Phys. Conf. Ser. 853, 012008 (2017).
[Crossref]

Centeno, J. A.

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

Chakraborty, M.

U. Saxena, M. Chakraborty, and P. Goswami, “Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples,” Biosens. Bioelectron. 26(6), 3037–3043 (2011).
[Crossref] [PubMed]

Chen, H.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Chen, N.-K.

Cheng, G.-L.

Chui, H.-C.

Dandekar, P.

M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).

Das, A. B.

U. Saxena and A. B. Das, “Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches,” Biosens. Bioelectron. 75, 196–205 (2016).
[Crossref] [PubMed]

Datta, M.

S. K. Arya, M. Datta, and B. D. Malhotra, “Recent advances in cholesterol biosensor,” Biosens. Bioelectron. 23(7), 1083–1100 (2008).
[Crossref] [PubMed]

Derina, K. V.

K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
[Crossref]

Deshpande, A.

M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).

Dhawane, M.

M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).

Ding, L.

H. Lin, M. Li, L. Ding, and J. Huang, “A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose,” Appl. Biochem. Biotechnol., 1–12 (2018).

Domínguez, R.

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

Dorozhko, E. V.

K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
[Crossref]

Eckel, R. H.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Es’haghi, Z.

A. Nezhadali, Z. Es’haghi, and A.-D. Khatibi, “Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography,” Food Anal. Methods 10(5), 1397–1407 (2017).
[Crossref]

Eskandari, H.

J. Hassanzadeh, A. Khataee, and H. Eskandari, “Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol,” Sens. Actuators B Chem. 259, 402–410 (2018).
[Crossref]

Fu, F.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Goldberg, A. C.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Gordon, D.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Goswami, P.

U. Saxena, M. Chakraborty, and P. Goswami, “Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples,” Biosens. Bioelectron. 26(6), 3037–3043 (2011).
[Crossref] [PubMed]

Guo, L.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Gupta, B. D.

V. Semwal and B. D. Gupta, “LSPR- and SPR-Based Fiber-Optic Cholesterol Sensor Using Immobilization of Cholesterol Oxidase Over Silver Nanoparticles Coated Graphene Oxide Nanosheets,” IEEE Sens. J. 18(3), 1039–1046 (2018).
[Crossref]

Gupta, M. N.

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
[Crossref] [PubMed]

Gupta, V.

G. Kaur, M. Tomar, and V. Gupta, “Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring,” Sens. Actuators B Chem. 261, 460–466 (2018).
[Crossref]

Hassanzadeh, J.

J. Hassanzadeh, A. Khataee, and H. Eskandari, “Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol,” Sens. Actuators B Chem. 259, 402–410 (2018).
[Crossref]

Hosoki, A.

Huang, C.-H.

Huang, J.

H. Lin, M. Li, L. Ding, and J. Huang, “A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose,” Appl. Biochem. Biotechnol., 1–12 (2018).

Husain, Q.

S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: A review,” Biotechnol. Adv. 30(3), 512–523 (2012).
[Crossref] [PubMed]

Jain, R.

M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).

Kaloti, M.

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
[Crossref] [PubMed]

Kapoor, M.

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
[Crossref] [PubMed]

Karakoti, A. S.

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

Kaur, G.

G. Kaur, M. Tomar, and V. Gupta, “Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring,” Sens. Actuators B Chem. 261, 460–466 (2018).
[Crossref]

Khataee, A.

J. Hassanzadeh, A. Khataee, and H. Eskandari, “Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol,” Sens. Actuators B Chem. 259, 402–410 (2018).
[Crossref]

Khatibi, A.-D.

A. Nezhadali, Z. Es’haghi, and A.-D. Khatibi, “Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography,” Food Anal. Methods 10(5), 1397–1407 (2017).
[Crossref]

Korotkova, E. I.

K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
[Crossref]

Lan, H.

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

Levy, D.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Li, M.

H. Lin, M. Li, L. Ding, and J. Huang, “A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose,” Appl. Biochem. Biotechnol., 1–12 (2018).

Li, Z.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Lichtenstein, A. H.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Lin, H.

H. Lin, M. Li, L. Ding, and J. Huang, “A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose,” Appl. Biochem. Biotechnol., 1–12 (2018).

Lin, H.-Y.

Lin, T.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Lloyd-Jones, D. M.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Lorenzo, J. M.

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

Malhotra, B. D.

S. K. Arya, M. Datta, and B. D. Malhotra, “Recent advances in cholesterol biosensor,” Biosens. Bioelectron. 23(7), 1083–1100 (2008).
[Crossref] [PubMed]

McBride, P.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Nezhadali, A.

A. Nezhadali, Z. Es’haghi, and A.-D. Khatibi, “Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography,” Food Anal. Methods 10(5), 1397–1407 (2017).
[Crossref]

Nirala, N. R.

N. R. Nirala, P. S. Saxena, and A. Srivastava, “Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 506–512 (2018).
[Crossref] [PubMed]

Nishiyama, M.

Pawar, S. H.

R. K. Satvekar and S. H. Pawar, “Multienzymatic Cholesterol Nanobiosensor Using Core–Shell Nanoparticles Incorporated Silica Nanocomposite,” J. Med. Biol. Eng. 38(5), 735–743 (2018).
[Crossref]

Pham, V.-H.

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

Purohit, R.

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

Putnik, P.

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

Robinson, J. G.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Satvekar, R. K.

R. K. Satvekar and S. H. Pawar, “Multienzymatic Cholesterol Nanobiosensor Using Core–Shell Nanoparticles Incorporated Silica Nanocomposite,” J. Med. Biol. Eng. 38(5), 735–743 (2018).
[Crossref]

Saxena, P. S.

N. R. Nirala, P. S. Saxena, and A. Srivastava, “Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 506–512 (2018).
[Crossref] [PubMed]

Saxena, U.

U. Saxena and A. B. Das, “Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches,” Biosens. Bioelectron. 75, 196–205 (2016).
[Crossref] [PubMed]

U. Saxena, M. Chakraborty, and P. Goswami, “Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples,” Biosens. Bioelectron. 26(6), 3037–3043 (2011).
[Crossref] [PubMed]

Schwartz, J. S.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Semwal, V.

V. Semwal and B. D. Gupta, “LSPR- and SPR-Based Fiber-Optic Cholesterol Sensor Using Immobilization of Cholesterol Oxidase Over Silver Nanoparticles Coated Graphene Oxide Nanosheets,” IEEE Sens. J. 18(3), 1039–1046 (2018).
[Crossref]

Shah, J.

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

Shero, S. T.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Singh, R.

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

Singh, S.

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

Smith, S. C.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Solanki, K.

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
[Crossref] [PubMed]

Song, Z.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Srivastava, A.

N. R. Nirala, P. S. Saxena, and A. Srivastava, “Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 506–512 (2018).
[Crossref] [PubMed]

Stone, N. J.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Tam, L. T.

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

Tam, P. D.

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

Tomar, M.

G. Kaur, M. Tomar, and V. Gupta, “Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring,” Sens. Actuators B Chem. 261, 460–466 (2018).
[Crossref]

Voronova, O. A.

K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
[Crossref]

Watanabe, K.

Watson, K.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Wilson, P. W. F.

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

Yasin, M.

M. Budiyanto and M. Yasin, “Cholesterol detection using optical fiber sensor based on intensity modulation,” J. Phys. Conf. Ser. 853, 012008 (2017).
[Crossref]

Zhong, L.

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Appl. Opt. (1)

Artif. Cells Blood Substit. Immobil. Biotechnol. (1)

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, “Nanomaterials as matrices for enzyme immobilization,” Artif. Cells Blood Substit. Immobil. Biotechnol. 39(2), 98–109 (2011).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

U. Saxena, M. Chakraborty, and P. Goswami, “Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples,” Biosens. Bioelectron. 26(6), 3037–3043 (2011).
[Crossref] [PubMed]

S. K. Arya, M. Datta, and B. D. Malhotra, “Recent advances in cholesterol biosensor,” Biosens. Bioelectron. 23(7), 1083–1100 (2008).
[Crossref] [PubMed]

U. Saxena and A. B. Das, “Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches,” Biosens. Bioelectron. 75, 196–205 (2016).
[Crossref] [PubMed]

Biotechnol. Adv. (1)

S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: A review,” Biotechnol. Adv. 30(3), 512–523 (2012).
[Crossref] [PubMed]

Food Anal. Methods (2)

A. Nezhadali, Z. Es’haghi, and A.-D. Khatibi, “Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography,” Food Anal. Methods 10(5), 1397–1407 (2017).
[Crossref]

R. Domínguez, F. J. Barba, J. A. Centeno, P. Putnik, H. Alpas, and J. M. Lorenzo, “Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique,” Food Anal. Methods 11(2), 319–326 (2018).
[Crossref]

IEEE Sens. J. (1)

V. Semwal and B. D. Gupta, “LSPR- and SPR-Based Fiber-Optic Cholesterol Sensor Using Immobilization of Cholesterol Oxidase Over Silver Nanoparticles Coated Graphene Oxide Nanosheets,” IEEE Sens. J. 18(3), 1039–1046 (2018).
[Crossref]

J. Am. Coll. Cardiol. (1)

N. J. Stone, J. G. Robinson, A. H. Lichtenstein, C. N. Bairey Merz, C. B. Blum, R. H. Eckel, A. C. Goldberg, D. Gordon, D. Levy, D. M. Lloyd-Jones, P. McBride, J. S. Schwartz, S. T. Shero, S. C. Smith, K. Watson, P. W. F. Wilson, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines, “2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” J. Am. Coll. Cardiol. 63(25 Pt B25 Pt B), 2889–2934 (2014).
[Crossref] [PubMed]

J. Anal. Chem. (1)

K. V. Derina, E. I. Korotkova, E. V. Dorozhko, and O. A. Voronova, “Voltammetric determination of cholesterol in human blood serum,” J. Anal. Chem. 72(8), 904–910 (2017).
[Crossref]

J. Colloid Interface Sci. (1)

J. Shah, R. Purohit, R. Singh, A. S. Karakoti, and S. Singh, “ATP-enhanced peroxidase-like activity of gold nanoparticles,” J. Colloid Interface Sci. 456, 100–107 (2015).
[Crossref] [PubMed]

J. Electron. Mater. (1)

T. T. N. Anh, H. Lan, L. T. Tam, V.-H. Pham, and P. D. Tam, “Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods,” J. Electron. Mater. 47(11), 6701–6708 (2018).
[Crossref]

J. Med. Biol. Eng. (1)

R. K. Satvekar and S. H. Pawar, “Multienzymatic Cholesterol Nanobiosensor Using Core–Shell Nanoparticles Incorporated Silica Nanocomposite,” J. Med. Biol. Eng. 38(5), 735–743 (2018).
[Crossref]

J. Phys. Conf. Ser. (1)

M. Budiyanto and M. Yasin, “Cholesterol detection using optical fiber sensor based on intensity modulation,” J. Phys. Conf. Ser. 853, 012008 (2017).
[Crossref]

Mikrochim. Acta (1)

T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, and F. Fu, “A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets,” Mikrochim. Acta 184(4), 1233–1237 (2017).
[Crossref]

Opt. Express (1)

Sens. Actuators B Chem. (3)

M. Dhawane, A. Deshpande, R. Jain, and P. Dandekar, “Colorimetric point-of-care detection of cholesterol using chitosan nanofibers,” Sens. Actuators B Chem. 281, 72–79 (2018).

J. Hassanzadeh, A. Khataee, and H. Eskandari, “Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol,” Sens. Actuators B Chem. 259, 402–410 (2018).
[Crossref]

G. Kaur, M. Tomar, and V. Gupta, “Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring,” Sens. Actuators B Chem. 261, 460–466 (2018).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

N. R. Nirala, P. S. Saxena, and A. Srivastava, “Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 506–512 (2018).
[Crossref] [PubMed]

Other (4)

H. Lin, M. Li, L. Ding, and J. Huang, “A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose,” Appl. Biochem. Biotechnol., 1–12 (2018).

S. Whirledge and J. A. Cidlowski, “Chapter 5 - Steroid Hormone Action,” in Yen and Jaffe's Reproductive Endocrinology (Eighth Edition), J. F. Strauss and R. L. Barbieri, eds. (Content Repository Only! Philadelphia, 2019), pp. 115–131.e114.

R. K. Mishra and R. Rajakumari, “Chapter 1 - Nanobiosensors for Biomedical Application: Present and Future Prospects,” in Characterization and Biology of Nanomaterials for Drug Delivery, S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, and S. Thomas, eds. (Elsevier, 2019), pp. 1–23.

V. Semwal, A. M. Shrivastav, and B. D. Gupta, “SPR Based Fiber Optic Sensor for Detection of Cholesterol Using Gel Entrapment,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT3C.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of fiber tapering process using hydrogen-oxygen flame-brushing technique.
Fig. 2
Fig. 2 (a) Absorbance spectra of synthesized AuNPs shows maximum absorbance peak is 520 nm, (b) TEM image of AuNPs, (c) histogram analysis of TEM image shows that mean diameter of AuNPs is 10.5 ± 0.5 nm, and (d)-(f) EDS analysis of AuNPs shows the presence of Au in as synthesized particles.
Fig. 3
Fig. 3 Immobilization of AuNPs over tapered fiber structure.
Fig. 4
Fig. 4 Scanning electron micrographs (SEM) of (a) AuNPs-immobilized taper fiber (b) AuNPs at the surface of taper fiber structure.
Fig. 5
Fig. 5 Experimental setup for reflection spectra through AuNPs-immobilized and enzyme functionalized tapered fiber sensor probe using spectrometer.
Fig. 6
Fig. 6 Reflectance intensity before and after AuNPs-immobilization of taper fiber sensor probe
Fig. 7
Fig. 7 (a) Reflection intensity through different concentration of cholesterol, (b) linearity range of biosensor.
Fig. 8
Fig. 8 (a) Reproducibility test of proposed sensor probe at 1 µM cholesterol concentration, (b) reusability test of taper fiber sensor probe with different concentration of cholesterol solution.
Fig. 9
Fig. 9 Selectivity test of proposed sensor with respect to different biomolecules present in serum.

Tables (1)

Tables Icon

Table 1 Comparison of sensing performance of proposed sensor with developed sensors

Metrics