Abstract

We present a tissue mimicking optical phantom recipe to create robust well tested solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres (scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was characterized over a broadband spectrum (600-1100 nm) for a wide range of optical properties (absorption 0.1-1 cm−1, reduced scattering 5-25 cm−1) that are relevant to human organs. The results of linearity show a proper scaling of optical properties as well as the absence of coupling between the absorber and scatterer at different concentrations. A reproducibility of 4% among different preparations was obtained, with a similar grade of spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of our work that is 3D printing human organs of biomedical relevance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Geometrically complex 3D-printed phantoms for diffuse optical imaging

Laura A. Dempsey, Melissa Persad, Samuel Powell, Danial Chitnis, and Jeremy C. Hebden
Biomed. Opt. Express 8(3) 1754-1762 (2017)

Recipes to make organic phantoms for diffusive optical spectroscopy

Giovanna Quarto, Antonio Pifferi, Ilaria Bargigia, Andrea Farina, Rinaldo Cubeddu, and Paola Taroni
Appl. Opt. 52(11) 2494-2502 (2013)

Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms

James L. Karagiannes, Zengyao Zhang, Bess Grossweiner, and Leonard I. Grossweiner
Appl. Opt. 28(12) 2311-2317 (1989)

References

  • View by:
  • |
  • |
  • |

  1. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
    [Crossref] [PubMed]
  2. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
    [Crossref] [PubMed]
  3. H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
    [Crossref] [PubMed]
  4. C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
    [Crossref] [PubMed]
  5. A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
    [Crossref] [PubMed]
  6. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
    [Crossref] [PubMed]
  7. G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
    [Crossref]
  8. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  9. R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
    [Crossref] [PubMed]
  10. J. Wang, J. Coburn, C. P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett. 39(10), 3010–3013 (2014).
    [Crossref] [PubMed]
  11. J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
    [Crossref] [PubMed]
  12. L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3D-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8(3), 1754–1762 (2017).
    [Crossref] [PubMed]
  13. G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
    [Crossref] [PubMed]
  14. C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
    [Crossref] [PubMed]
  15. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
    [Crossref] [PubMed]
  16. D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
    [Crossref] [PubMed]
  17. S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).
  18. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
    [Crossref] [PubMed]
  19. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
    [Crossref] [PubMed]
  20. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
    [Crossref] [PubMed]
  21. E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett. 37(14), 2877–2879 (2012).
    [Crossref] [PubMed]
  22. S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
    [Crossref] [PubMed]
  23. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
    [Crossref] [PubMed]
  24. A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
    [Crossref] [PubMed]
  25. S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
    [Crossref]
  26. S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
    [Crossref] [PubMed]
  27. L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
    [Crossref] [PubMed]
  28. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4587–4599 (1997).
    [Crossref] [PubMed]
  29. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  30. A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
    [Crossref] [PubMed]
  31. E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
    [Crossref] [PubMed]
  32. L. Mei, G. Somesfalean, and S. Svanberg, “Pathlength determination for gas in scattering media absorption spectroscopy,” Sensors (Basel) 14(3), 3871–3890 (2014).
    [Crossref] [PubMed]
  33. P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
    [Crossref] [PubMed]
  34. P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
    [Crossref] [PubMed]

2018 (4)

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

2017 (4)

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3D-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8(3), 1754–1762 (2017).
[Crossref] [PubMed]

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

2016 (1)

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

2015 (4)

A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

2014 (4)

J. Wang, J. Coburn, C. P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett. 39(10), 3010–3013 (2014).
[Crossref] [PubMed]

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

L. Mei, G. Somesfalean, and S. Svanberg, “Pathlength determination for gas in scattering media absorption spectroscopy,” Sensors (Basel) 14(3), 3871–3890 (2014).
[Crossref] [PubMed]

2013 (2)

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
[Crossref] [PubMed]

2012 (1)

2009 (2)

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

2008 (1)

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

2007 (1)

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

1998 (1)

G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

1997 (3)

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref] [PubMed]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

1995 (1)

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

1994 (1)

Åkeson, J.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Akgün, N.

G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Alerstam, E.

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett. 37(14), 2877–2879 (2012).
[Crossref] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

Andersson-Engels, S.

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
[Crossref] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett. 37(14), 2877–2879 (2012).
[Crossref] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
[Crossref] [PubMed]

Aranda, G.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

Arridge, S.

Avrillier, S.

Bargigia, I.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Bassi, A.

Bays, R.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Beck, G. C.

G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Beh, J. S.

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

Bisaillon, C. E.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

Boetti, N. G.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

Bood, J.

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

Boso, G.

Caffini, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Ceci-Ginistrelli, E.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

Chen, Y.

Chitnis, D.

Coburn, J.

Cocola, L.

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Comelli, D.

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Contini, D.

Cooper, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

Dalla Mora, A.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett. 37(14), 2877–2879 (2012).
[Crossref] [PubMed]

Dam, J. S.

Dehghani, H.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

Delpy, D. T.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

Dempsey, L. A.

Dhadwal, G.

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Di Sieno, L.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

Diao, D. Y.

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Dufour, M.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

Durduran, T.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
[Crossref] [PubMed]

Durkin, A. J.

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

Farina, A.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

Farzam, P.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

Fellman, V.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Feng, T. C.

Firbank, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

Folestad, S.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

Grosenick, D.

Haskell, R. C.

Hebden, J.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Hebden, J. C.

Jahr, J.

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Janner, D.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

Jelzow, A.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Johansson, J.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
[Crossref] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

Johansson, S.

Kacprzak, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Kennedy, G. T.

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

Khoptyar, D.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
[Crossref] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

Konugolu Venkata Sekar, S.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

Krite Svanberg, E.

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

Lamouche, G.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

Larsson, J.

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

Larsson, M.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Lee, T. K.

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Lentsch, G. R.

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

Lewander Xu, M.

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Liang, C. P.

Liao, P.

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

Liebert, A.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Lindner, C.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

Lui, H.

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Lundin, P.

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Macdonald, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

Maciejko, R.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

Martelli, F.

Martinenghi, E.

A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

Maughan Jones, C.

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

Mazurenka, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

McAdams, M. S.

McLean, D. I.

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Mei, L.

L. Mei, G. Somesfalean, and S. Svanberg, “Pathlength determination for gas in scattering media absorption spectroscopy,” Sensors (Basel) 14(3), 3871–3890 (2014).
[Crossref] [PubMed]

Milanese, D.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

Milej, D.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Möller, M.

Monchalin, J. P.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

Monnier, P.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Mora, A. D.

Mora, M.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

Munro, P. R. T.

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

Nghiem, H. L.

Oda, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

Pagliazzi, M.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Persad, M.

Pfefer, T. J.

Pifferi, A.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett. 37(14), 2877–2879 (2012).
[Crossref] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Ponticorvo, A.

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

Powell, S.

Pugliese, D.

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

Quarto, G.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

Ramella-Roman, J. C.

Re, R.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

Robert, D.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Rück, A.

G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Saager, R. B.

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

Saleem, M.

Savary, J. F.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Sawosz, P.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Sekar, S. K.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

Somesfalean, G.

L. Mei, G. Somesfalean, and S. Svanberg, “Pathlength determination for gas in scattering media absorption spectroscopy,” Sensors (Basel) 14(3), 3871–3890 (2014).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Sparén, A.

Spinelli, L.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett. 37(14), 2877–2879 (2012).
[Crossref] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

Squarcia, M.

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

Stamm, H.

Steiner, R.

G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Steinkellner, O.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Sterenborg, H. J.

Subash, A. A.

Svaasand, L. O.

Svanberg, E. K.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Svanberg, K.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Svanberg, S.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

L. Mei, G. Somesfalean, and S. Svanberg, “Pathlength determination for gas in scattering media absorption spectroscopy,” Sensors (Basel) 14(3), 3871–3890 (2014).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

Svensson, T.

Swartling, J.

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
[Crossref] [PubMed]

Taroni, P.

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

Taubert, D. R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Tchvialeva, L.

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Theumann, J. F.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Torricelli, A.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

A. D. Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946 (2015).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

Tosi, A.

Trieu, B.

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

Tromberg, B. J.

Tsay, T. T.

Tualle, J. M.

Urbano-Ispizua, A.

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

van den Bergh, H.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

van Veen, R. L.

Vitkin, A.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Wabnitz, H.

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[Crossref] [PubMed]

Wagnières, G.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Wang, J.

Whelan, M.

Woolsey, N.

Zaccanti, G.

Zappa, F.

Zucchelli, L.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Biophys. Chem. (1)

S. Konugolu Venkata Sekar, J. S. Beh, A. Farina, A. Dalla Mora, A. Pifferi, and P. Taroni, “Broadband diffuse optical characterization of elastin for biomedical applications,” Biophys. Chem. 229, 130–134 (2017).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100609 (2015).

J. Biomed. Opt. (6)

G. T. Kennedy, G. R. Lentsch, B. Trieu, A. Ponticorvo, R. B. Saager, and A. J. Durkin, “Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics,” J. Biomed. Opt. 22(7), 076013 (2017).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, R. Cubeddu, G. Quarto, R. Re, S. K. Sekar, L. Spinelli, A. Farina, F. Martelli, and H. Wabnitz, “Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy,” J. Biomed. Opt. 20(12), 121304 (2015).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

P. Lundin, E. K. Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study,” J. Biomed. Opt. 18(12), 127005 (2013).
[Crossref] [PubMed]

J. Biophotonics (3)

P. Liao, J. Larsson, E. Krite Svanberg, P. Lundin, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Computer simulation analysis of source-detector position for percutaneously measured O2 -gas signal in a three-dimensional preterm infant lung,” J. Biophotonics 11(11), e201800023 (2018).
[Crossref] [PubMed]

L. Di Sieno, N. G. Boetti, A. Dalla Mora, D. Pugliese, A. Farina, S. Konugolu Venkata Sekar, E. Ceci-Ginistrelli, D. Janner, A. Pifferi, and D. Milanese, “Towards the use of bioresorbable fibers in time-domain diffuse optics,” J. Biophotonics 11(1), 1–12 (2018).
[Crossref] [PubMed]

J. Larsson, P. Liao, P. Lundin, E. Krite Svanberg, J. Swartling, M. Lewander Xu, J. Bood, and S. Andersson-Engels, “Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations,” J. Biophotonics 11(3), 1–8 (2018).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Med. Sci. (1)

G. C. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Lasers Surg. Med. (1)

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).
[Crossref] [PubMed]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Pediatr. Res. (1)

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Phys. Med. Biol. (4)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[Crossref] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. McLean, and T. K. Lee, “Durable rough skin phantoms for optical modeling,” Phys. Med. Biol. 59(2), 485–492 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and A. Urbano-Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Proc. SPIE 9538, 95380R (2015).
[Crossref]

Rev. Sci. Instrum. (2)

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80(6), 063105 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Konugolu Venkata Sekar, A. Farina, A. Dalla Mora, C. Lindner, M. Pagliazzi, M. Mora, G. Aranda, H. Dehghani, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores,” Sci. Rep. 8(1), 10015 (2018).
[Crossref] [PubMed]

Sensors (Basel) (1)

L. Mei, G. Somesfalean, and S. Svanberg, “Pathlength determination for gas in scattering media absorption spectroscopy,” Sensors (Basel) 14(3), 3871–3890 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The key ingredients (top left), the phantom recipe with detailed manufacturing procedure (top right), a picture of the phantom matrix (bottom right) produced and their respective absorber (stock solution) and scatterer percentage concentrations (bottom left).
Fig. 2
Fig. 2 a) Average absorption spectra of all the scattering phantoms with fixed absorption, and b) average reduced scattering spectra of all the absorption phantoms with fixed reduced scattering coefficients. The error bar represents the standard deviation of the spectra in a series.
Fig. 3
Fig. 3 Results of linearity tests at 820 nm a) absorption linearity as a function of added absorber b) scattering linearity as a function of added scatterers c) scattering properties of phantoms for different amount of absorber d) absorption properties of phantoms for different amount of added scatterers.
Fig. 4
Fig. 4 Reproducibility test a) absorption reproducibility, b) reduced scattering coefficient reproducibility of the cB phantom. Homogeneity test results of absorption (c) and reduced scattering (d) both tests were found to have CV less than 4%.
Fig. 5
Fig. 5 Non-scattering anatomically correct 3D mock-up SiliGlass phantom made using CT scans of a newborn infant.

Tables (1)

Tables Icon

Table 1 Linearity parameters (slope and intercept) of phantom matrix over the broadband range (600-1100 nm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Expected absorption coefficient ( µ a ) =slope*Absorber (%) + intercept
Expected reduced scattering coefficient ( µ s ) =slope*Scatter (%) + intercept

Metrics