Abstract

Remotely monitoring and regulating temperature in a small area are of vital importance for hyperthermia therapy. Herein, we report ~11 nm NaErF4 nanocrystal as the ultra-small nanoheater, which is highly safe for biological applications. Under 1530 nm photon excitation, upconversion intensity of NaErF4 is significantly enhanced as compared to the conventionally used 980 nm pumping source. Upconversion mechanisms are discussed on the basis of power dependence measurements. Importantly, light-to-heat transformation efficiency of NaErF4 through 1530 nm pumping is determined as high as 75%. Efficient NIR emission, centered at ~800 nm and thus within the biological window, is used for the temperature feedback. The potential applications of this highly efficient nanoheater for controlled photo-hyperthermia treatments are also demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

Multifunctional nanoheater based on NaGdF4:Yb3+, Er3+ upconversion nanoparticles

Qiyue Shao, Lilai Ouyang, Lifei Jin, and Jianqing Jiang
Opt. Express 23(23) 30057-30066 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
    [Crossref] [PubMed]
  2. R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
    [PubMed]
  3. J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
    [Crossref] [PubMed]
  4. F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
    [Crossref]
  5. Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
    [Crossref]
  6. E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
    [Crossref]
  7. U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
    [Crossref]
  8. U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
    [Crossref] [PubMed]
  9. U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
    [Crossref] [PubMed]
  10. L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
    [Crossref] [PubMed]
  11. E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
    [Crossref]
  12. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
    [Crossref]
  13. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
    [Crossref] [PubMed]
  14. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
    [Crossref] [PubMed]
  15. Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
    [Crossref] [PubMed]
  16. C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
    [Crossref] [PubMed]
  17. H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
    [Crossref] [PubMed]
  18. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
    [Crossref] [PubMed]
  19. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
    [Crossref] [PubMed]
  20. C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
    [Crossref]
  21. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  22. M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
    [Crossref]
  23. L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
    [Crossref]
  24. L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
    [Crossref] [PubMed]
  25. V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
    [Crossref] [PubMed]
  26. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
    [Crossref] [PubMed]
  27. E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
    [Crossref] [PubMed]
  28. L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
    [Crossref] [PubMed]
  29. F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49(41), 7456–7460 (2010).
    [Crossref] [PubMed]
  30. N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
    [Crossref] [PubMed]
  31. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [Crossref] [PubMed]
  32. D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
    [Crossref] [PubMed]
  33. C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
    [Crossref] [PubMed]
  34. L. Liu, K. Lu, L. Xu, D. Tang, C. Liu, M. K. Shahzad, D. Yan, F. Khan, E. Zhao, and H. Li, “Highly efficient upconversion luminescence of Er heavily doped nanocrystals through 1530 nm excitation,” Opt. Lett. 44(3), 711–714 (2019).
    [Crossref] [PubMed]
  35. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
    [Crossref] [PubMed]
  36. L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
    [Crossref]

2019 (1)

2018 (2)

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

2017 (4)

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

2016 (7)

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

2015 (2)

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

2014 (1)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

2013 (3)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

2012 (2)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[Crossref]

2011 (3)

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

2010 (2)

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49(41), 7456–7460 (2010).
[Crossref] [PubMed]

2009 (3)

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[Crossref] [PubMed]

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

2008 (1)

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

2007 (1)

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

2004 (1)

M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

1998 (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

1991 (1)

J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
[Crossref] [PubMed]

1983 (1)

R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
[PubMed]

Acosta Elias, M.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Alencar, M. A. R. C.

M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Almutairi, A.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Andersson-Engels, S.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Arabasz, S.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

Araújo, C. B.

M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Au, L.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Benayas, A.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Bovero, E.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Bravo, D.

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

Britt, R. H.

R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
[PubMed]

Cabrera, D.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Carrasco, E.

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Chan, E. M.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Chen, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Chen, Z.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Choi, H. C.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Coello, J. G.

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[Crossref]

Cueva, L.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

Dai, H.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

del Rosal, B.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Diao, S.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Dong, X.

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

Dou, S.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Driesen, K.

Du, Y.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Ebina, Y.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Fang, J.

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

Feng, W.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Ferreira Silva, W.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Fike, J. R.

J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
[Crossref] [PubMed]

Francés-Soriano, L.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Fuente, Á. J.

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

García Solé, J.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

García Solé, J. A.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Gobbel, G. T.

J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
[Crossref] [PubMed]

Goldys, E. M.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Gonzalez, P. H.

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Gredin, P.

Guedes, I.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Halas, N. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Haro-González, P.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[Crossref]

Hattori, A.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

He, S.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hemmer, E.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Hessel, C. M.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

Hong, C.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Hong, S. S.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Hu, J.

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Hyodo, H.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Jacinto, C.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Jacinto da Silva, C.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Jaque, D.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[Crossref]

Jiang, F.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Jin, D.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Johnson, N. J.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Khan, F.

Kim, H.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Kim, M.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Kishimoto, H.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Koo, B.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

Korgel, B. A.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

Kumar, K. U.

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Labrador-Páez, L.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

Lang, C. I.

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

Lee, C.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Lee, D. H.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Lee, S. H.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Lee, S. T.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Lee, W. I. J.

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Li, F.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Li, H.

Li, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

Li, X.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Li, Z. Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Liang, H.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Liu, C.

Liu, D.

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Liu, G.

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

Liu, L.

Liu, Q.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Liu, X.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49(41), 7456–7460 (2010).
[Crossref] [PubMed]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

López, F. J.

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

Lu, K.

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Lyons, B. E.

R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
[PubMed]

Ma, C.

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Maciel, G. S.

M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Maestro, L. M.

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[Crossref]

Marciniak, L.

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Martín Rodríguez, E.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Martínez Maestro, L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Moon, H. K.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Mortier, M.

Moshchalkov, V. V.

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Orlovskii, Y. V.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Ortgies, D. H.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Ortgies, F. D. H.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

Panthani, M. G.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

Patra, A.

M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Pattani, V. P.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

Pérez-Prieto, J.

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Pilch, A.

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

Piper, J. A.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Plaza, J. L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Pounds, D. W.

R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
[PubMed]

Prionas, S. D.

R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
[PubMed]

Prorok, K.

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

Qian, J.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Qin, X.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Rähn, M.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Rasch, M.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

Ren, W.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Rocha, U.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Rodriguez, V. D.

Rodríguez, E. M.

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Rodríguez-Sevilla, P.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

Rosal, B.

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Salas, G.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

Sammelselg, V.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Satoh, T.

J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
[Crossref] [PubMed]

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Shahzad, M. K.

Siekkinen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Soga, K.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Solé, J. G.

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Somesfalean, G.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Song, Y.

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

Stauffer, P. R.

J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
[Crossref] [PubMed]

Su, Q.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

Sun, X.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Tan, Y. W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Tang, D.

Teran, F.J

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

Tian, Q.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Tikhomirov, V. K.

Tunnell, J. W.

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

van Veggel, F. C.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Vanetsev, A. S.

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Venkatachalam, N.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Wang, D.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Wang, F.

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49(41), 7456–7460 (2010).
[Crossref] [PubMed]

Wang, J.

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49(41), 7456–7460 (2010).
[Crossref] [PubMed]

Warsen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Wen, S.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Xi, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Xi, P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Xia, Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Ximendes, E. C.

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

Xu, L.

Xu, X.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

Yan, D.

Yang, K.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Yang, S.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Yu, W.

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

Zhan, Q.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhang, G.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, H.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhang, S.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, Y.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

Zhang, Z.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhao, E.

Zhao, J.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhou, Z.

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

Zhu, M.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Zou, R.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

ACS Nano (4)

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

E. Carrasco, B. Rosal, F. Sanz-Rodríguez, Á. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

F. D. H. Ortgies, F.J Teran, U. Rocha, L. Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28(11), 1704434 (2018).
[Crossref]

Adv. Mater. (2)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49(41), 7456–7460 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

M. A. R. C. Alencar, G. S. Maciel, C. B. Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, “LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window,” Appl. Phys. Lett. 108(25), 253103 (2016).
[Crossref]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of Gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[Crossref]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Chem. Soc. Rev. (1)

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

Int. J. Hyperthermia (1)

J. R. Fike, G. T. Gobbel, T. Satoh, and P. R. Stauffer, “Normal brain response after interstitial microwave hyperthermia,” Int. J. Hyperthermia 7(5), 795–808 (1991).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

J. Lumin. (1)

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, and D. Jaque, “Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles,” J. Lumin. 175, 149–157 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Marciniak, K. Prorok, and A. Bednarkiewicz, “Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7890–7897 (2017).
[Crossref]

J. Phys. Chem. C (1)

Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, and J. Li, “Au Nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property,” J. Phys. Chem. C 119(32), 18527–18536 (2015).
[Crossref]

J. Phys. Chem. Lett. (1)

C. Ma, X. Xu, F. Wang, Z. Zhou, S. Wen, D. Liu, J. Fang, C. I. Lang, and D. Jin, “Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles,” J. Phys. Chem. Lett. 7(16), 3252–3258 (2016).
[Crossref] [PubMed]

Mater. Chem. (1)

C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. J. Lee, “Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation,” Mater. Chem. 18(40), 4790–4795 (2008).
[Crossref]

Med. Instrum. (1)

R. H. Britt, B. E. Lyons, D. W. Pounds, and S. D. Prionas, “Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors,” Med. Instrum. 17(2), 172–177 (1983).
[PubMed]

Nano Lett. (3)

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy,” Nano Lett. 11(6), 2560–2566 (2011).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Nanoscale (5)

L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, “A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer,” Nanoscale 8(9), 5037–5042 (2016).
[Crossref] [PubMed]

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, and A. Bednarkiewicz, “Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry,” Nanoscale 9(24), 8288–8297 (2017).
[Crossref] [PubMed]

L. Labrador-Páez, E. C. Ximendes, P. Rodríguez-Sevilla, D. H. Ortgies, U. Rocha, C. Jacinto, E. Martín Rodríguez, P. Haro-González, and D. Jaque, “Core-shell rare-earth-doped nanostructures in biomedicine,” Nanoscale 10(27), 12935–12956 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7(1), 10437 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Small (1)

U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Y. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12(39), 5394–5400 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 TEM photograph of as-prepared NaErF4 nanocrystals, scale bar is 50 nm. Distribution of the particle size is given by measuring 100 particles, and the mean size is calculated to be ~11.3 nm.
Fig. 2
Fig. 2 Optical properties of NaErF4. (a) Absorption spectrum of Er3 + in the NIR region; (b) Comparison of upconversion spectra upon 980 nm and 1530 nm excitation; (c) Upconversion power dependence. Linear fitting lines and their slopes are given; (d) Energy levels and upconversion pathways of Er3 + under 980 nm and 1530 nm excitations.
Fig. 3
Fig. 3 Calculation of the light-to-heat conversion efficiency. (a) Heating and cooling processes of NaErF4 in cyclohexane; (b) Variation of t vs. T function, from which time constant can be calculated by the linear fitting.
Fig. 4
Fig. 4 Sensing calibration and application demonstration of the NaErF4 nanoheater. (a) Normalized spectra (normalized at 825 nm) of NIR emission under lower and higher temperature; (b) Calibration of the temperature feedback in the nanoheater. Fitting function is given; (c) Schematic diagram of the experimental setup of the in ex vivo demonstration, showing the heating effect of the nanoheater through 2 mm thickness pork tissue; (d) Normalized spectra of NIR emission under different laser power excitation; (e) Heating effect under different laser powers, surface temperatures are monitored by the thermal camera and eigen temperatures are calculated from FIR sensing. The inset is the digital photograph of the scattered laser beam after passing through the pork tissue, the radius of the scattered beam is evaluated to be 0.4 cm, which is used for estimating the incident power density.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = h S ( T max T 0 ) Q b I ( 1 10 A )
t = τ s ln ( T max T 0 T T 0 )
F I R = k T + b

Metrics