Abstract

Accumulation of advanced glycation end-products (AGEs) in biological tissues occurs as a consequence of normal ageing and pathology. Most biological tissues are composed of considerable amounts of collagen, with collagen fibrils being the most abundant form. Collagen fibrils are the smallest discernible structural elements of load-bearing tissues and as such, they are of high biomechanical importance. The low turnover of collagen cause AGEs to accumulate within the collagen fibrils with normal ageing as well as in pathologies. We hypothesized that collagen fibrils bearing AGEs have altered hydration and mechanical properties. To this end, we employed atomic force and Brillouin light scattering microscopy to measure the extent of hydration as well as the transverse elastic properties of collagen fibrils treated with ribose. We find that hydration is different in collagen fibrils bearing AGEs and this is directly related to their mechanical properties. Collagen fibrils treated with ribose showed increased hydration levels and decreased transverse stiffness compared to controlled samples. Our results show that BLS and AFM yield complementary evidence on the effect of hydration on the nanomechanical properties of collagen fibrils.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Decrease in fluorescence lifetime by glycation of collagen and its application in determining advanced glycation end-products in human dentin

Shuichiro Fukushima, Masato Shimizu, Jiro Miura, Yusuke Matsuda, Mizuho Kubo, Mamoru Hashimoto, Takuya Aoki, Fumio Takeshige, and Tsutomu Araki
Biomed. Opt. Express 6(5) 1844-1856 (2015)

Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

Multiphoton spectral microscopy for imaging and quantification of tissue glycation

Jo-Ya Tseng, Ara A. Ghazaryan, Wen Lo, Yang-Fang Chen, Vladimir Hovhannisyan, Shean-Jen Chen, Hsin-Yuan Tan, and Chen-Yuan Dong
Biomed. Opt. Express 2(2) 218-230 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
    [PubMed]
  2. K. S. Polonsky, “The past 200 years in diabetes,” N. Engl. J. Med. 367(14), 1332–1340 (2012).
    [Crossref] [PubMed]
  3. A. J. Bailey, “Molecular mechanisms of ageing in connective tissues,” Mech. Ageing Dev. 122(7), 735–755 (2001).
    [Crossref] [PubMed]
  4. A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mech. Ageing Dev. 106(1-2), 1–56 (1998).
    [Crossref] [PubMed]
  5. K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
    [Crossref] [PubMed]
  6. A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
    [Crossref] [PubMed]
  7. V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
    [Crossref] [PubMed]
  8. A. W. Stitt, “Advanced glycation: an important pathological event in diabetic and age related ocular disease,” Br. J. Ophthalmol. 85(6), 746–753 (2001).
    [Crossref] [PubMed]
  9. N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
    [Crossref] [PubMed]
  10. G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovasc. Res. 63(4), 582–592 (2004).
    [Crossref] [PubMed]
  11. A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
    [Crossref] [PubMed]
  12. M. Saito and K. Marumo, “Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus,” Osteoporos. Int. 21(2), 195–214 (2010).
    [Crossref] [PubMed]
  13. A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
    [Crossref] [PubMed]
  14. A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
    [Crossref] [PubMed]
  15. G. K. Reddy, “Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon,” Exp. Diabesity Res. 5(2), 143–153 (2004).
    [Crossref] [PubMed]
  16. G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, “Glycation-induced matrix stability in the rabbit achilles tendon,” Arch. Biochem. Biophys. 399(2), 174–180 (2002).
    [Crossref] [PubMed]
  17. L. Maillard, “Action of amino acids on sugars. Formation of melanoidins in a methodical way,” Compt. rend 154, 66 (1912).
  18. M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
    [Crossref] [PubMed]
  19. N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
    [Crossref] [PubMed]
  20. D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
    [Crossref] [PubMed]
  21. V. R. Sherman, W. Yang, and M. A. Meyers, “The materials science of collagen,” J. Mech. Behav. Biomed. Mater. 52, 22–50 (2015).
    [Crossref] [PubMed]
  22. B. Brodsky and A. V. Persikov, “Molecular structure of the collagen triple helix,” Adv. Protein Chem. 70, 301–339 (2005).
    [Crossref] [PubMed]
  23. A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
    [Crossref] [PubMed]
  24. K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
    [Crossref] [PubMed]
  25. O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
    [Crossref] [PubMed]
  26. O. G. Andriotis, S. Desissaire, and P. J. Thurner, “Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs,” ACS Nano 12(4), 3671–3680 (2018).
    [Crossref] [PubMed]
  27. O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
    [Crossref] [PubMed]
  28. C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
    [Crossref]
  29. C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
    [Crossref] [PubMed]
  30. A. J. Heim, T. J. Koob, and W. G. Matthews, “Low strain nanomechanics of collagen fibrils,” Biomacromolecules 8(11), 3298–3301 (2007).
    [Crossref] [PubMed]
  31. A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett. 89(18), 181902 (2006).
    [Crossref]
  32. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  33. F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
    [Crossref] [PubMed]
  34. S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
    [Crossref] [PubMed]
  35. S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135(1), 39–51 (1979).
    [Crossref] [PubMed]
  36. R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
    [Crossref] [PubMed]
  37. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  38. A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
    [Crossref] [PubMed]
  39. J. L. Hutter and J. Bechhoefer, “Calibration of atomic‐force microscope tips,” Rev. Sci. Instrum. 64(7), 1868–1873 (1993).
    [Crossref]
  40. W. F. Heinz and J. H. Hoh, “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol. 17(4), 143–150 (1999).
    [Crossref] [PubMed]
  41. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
    [Crossref]
  42. D. J. Keller and F. S. Franke, “Envelope reconstruction of probe microscope images,” Surf. Sci. 294(3), 409–419 (1993).
    [Crossref]
  43. B. P. Berne, R, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Dover Publications, 2000).
  44. R. Prevedel, A. Diz-Muñoz, G. Ruocco, and G. Antonacci, “Brillouin microscopy-a revolutionary tool for mechanobiology?” arXiv preprint arXiv:1901.02006 (2019).
  45. F. Palombo and D. Fioretto, “Brillouin Light Scattering: Applications in Biomedical Sciences,” arXiv preprint arXiv:1901.05176 (2019).
  46. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  47. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  48. S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
    [Crossref] [PubMed]
  49. J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
    [Crossref] [PubMed]
  50. R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
    [Crossref] [PubMed]
  51. S. Kudo, H. Ogawa, E. Yamakita, S. Watanabe, T. Suzuki, and S. Nakashima, “Adsorption of Water to Collagen as Studied Using Infrared (IR) Microspectroscopy Combined with Relative Humidity Control System and Quartz Crystal Microbalance,” Appl. Spectrosc. 71(7), 1621–1632 (2017).
    [Crossref] [PubMed]
  52. G. D. Fullerton and A. Rahal, “Collagen structure: the molecular source of the tendon magic angle effect,” J. Magn. Reson. Imaging 25(2), 345–361 (2007).
    [Crossref] [PubMed]
  53. A. Miller and J. S. Wray, “Molecular packing in collagen,” Nature 230(5294), 437–439 (1971).
    [Crossref] [PubMed]
  54. R. I. Price, S. Lees, and D. A. Kirschner, “X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration,” Int. J. Biol. Macromol. 20(1), 23–33 (1997).
    [Crossref] [PubMed]
  55. M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
    [Crossref] [PubMed]
  56. R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
    [Crossref] [PubMed]

2018 (2)

O. G. Andriotis, S. Desissaire, and P. J. Thurner, “Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs,” ACS Nano 12(4), 3671–3680 (2018).
[Crossref] [PubMed]

R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
[Crossref] [PubMed]

2017 (2)

S. Kudo, H. Ogawa, E. Yamakita, S. Watanabe, T. Suzuki, and S. Nakashima, “Adsorption of Water to Collagen as Studied Using Infrared (IR) Microspectroscopy Combined with Relative Humidity Control System and Quartz Crystal Microbalance,” Appl. Spectrosc. 71(7), 1621–1632 (2017).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

2016 (2)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

2015 (4)

V. R. Sherman, W. Yang, and M. A. Meyers, “The materials science of collagen,” J. Mech. Behav. Biomed. Mater. 52, 22–50 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

2014 (2)

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

2013 (1)

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

2012 (1)

K. S. Polonsky, “The past 200 years in diabetes,” N. Engl. J. Med. 367(14), 1332–1340 (2012).
[Crossref] [PubMed]

2011 (2)

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

2010 (2)

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

M. Saito and K. Marumo, “Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus,” Osteoporos. Int. 21(2), 195–214 (2010).
[Crossref] [PubMed]

2009 (1)

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
[Crossref] [PubMed]

2008 (3)

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
[Crossref]

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

2007 (5)

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

A. J. Heim, T. J. Koob, and W. G. Matthews, “Low strain nanomechanics of collagen fibrils,” Biomacromolecules 8(11), 3298–3301 (2007).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

G. D. Fullerton and A. Rahal, “Collagen structure: the molecular source of the tendon magic angle effect,” J. Magn. Reson. Imaging 25(2), 345–361 (2007).
[Crossref] [PubMed]

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
[Crossref] [PubMed]

2006 (1)

A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett. 89(18), 181902 (2006).
[Crossref]

2005 (2)

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

B. Brodsky and A. V. Persikov, “Molecular structure of the collagen triple helix,” Adv. Protein Chem. 70, 301–339 (2005).
[Crossref] [PubMed]

2004 (3)

G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovasc. Res. 63(4), 582–592 (2004).
[Crossref] [PubMed]

G. K. Reddy, “Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon,” Exp. Diabesity Res. 5(2), 143–153 (2004).
[Crossref] [PubMed]

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

2002 (1)

G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, “Glycation-induced matrix stability in the rabbit achilles tendon,” Arch. Biochem. Biophys. 399(2), 174–180 (2002).
[Crossref] [PubMed]

2001 (2)

A. W. Stitt, “Advanced glycation: an important pathological event in diabetic and age related ocular disease,” Br. J. Ophthalmol. 85(6), 746–753 (2001).
[Crossref] [PubMed]

A. J. Bailey, “Molecular mechanisms of ageing in connective tissues,” Mech. Ageing Dev. 122(7), 735–755 (2001).
[Crossref] [PubMed]

2000 (1)

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

1999 (3)

A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
[Crossref] [PubMed]

W. F. Heinz and J. H. Hoh, “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol. 17(4), 143–150 (1999).
[Crossref] [PubMed]

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

1998 (2)

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mech. Ageing Dev. 106(1-2), 1–56 (1998).
[Crossref] [PubMed]

1997 (1)

R. I. Price, S. Lees, and D. A. Kirschner, “X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration,” Int. J. Biol. Macromol. 20(1), 23–33 (1997).
[Crossref] [PubMed]

1994 (1)

J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
[Crossref] [PubMed]

1993 (2)

D. J. Keller and F. S. Franke, “Envelope reconstruction of probe microscope images,” Surf. Sci. 294(3), 409–419 (1993).
[Crossref]

J. L. Hutter and J. Bechhoefer, “Calibration of atomic‐force microscope tips,” Rev. Sci. Instrum. 64(7), 1868–1873 (1993).
[Crossref]

1989 (1)

A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
[Crossref] [PubMed]

1984 (1)

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

1979 (1)

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135(1), 39–51 (1979).
[Crossref] [PubMed]

1977 (2)

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
[Crossref] [PubMed]

A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
[Crossref] [PubMed]

1971 (1)

A. Miller and J. S. Wray, “Molecular packing in collagen,” Nature 230(5294), 437–439 (1971).
[Crossref] [PubMed]

1912 (1)

L. Maillard, “Action of amino acids on sugars. Formation of melanoidins in a methodical way,” Compt. rend 154, 66 (1912).

Amano, N.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Andriotis, O. G.

O. G. Andriotis, S. Desissaire, and P. J. Thurner, “Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs,” ACS Nano 12(4), 3671–3680 (2018).
[Crossref] [PubMed]

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Baer, E.

A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
[Crossref] [PubMed]

Bailey, A. J.

A. J. Bailey, “Molecular mechanisms of ageing in connective tissues,” Mech. Ageing Dev. 122(7), 735–755 (2001).
[Crossref] [PubMed]

A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mech. Ageing Dev. 106(1-2), 1–56 (1998).
[Crossref] [PubMed]

Bank, R. A.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Basta, G.

G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovasc. Res. 63(4), 582–592 (2004).
[Crossref] [PubMed]

Baynes, J. W.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Bechhoefer, J.

J. L. Hutter and J. Bechhoefer, “Calibration of atomic‐force microscope tips,” Rev. Sci. Instrum. 64(7), 1868–1873 (1993).
[Crossref]

Bedi, A.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Bella, J.

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
[Crossref] [PubMed]

Benner, S.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Berman, H. M.

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
[Crossref] [PubMed]

Bertinetti, L.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Biemel, K. M.

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

Bijlsma, J. W.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Birk, D. E.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Birtles, M. J.

A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
[Crossref] [PubMed]

Bozec, L.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
[Crossref] [PubMed]

Brockwell, D. J.

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
[Crossref] [PubMed]

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
[Crossref]

Brodsky, B.

B. Brodsky and A. V. Persikov, “Molecular structure of the collagen triple helix,” Adv. Protein Chem. 70, 301–339 (2005).
[Crossref] [PubMed]

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
[Crossref] [PubMed]

Buehler, M. J.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

Caponi, S.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Chang, S. W.

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

Chang, S.-W.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Chervoneva, I.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Cleary, P. A.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

Conway, J. F.

A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
[Crossref] [PubMed]

Craig, A. S.

A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
[Crossref] [PubMed]

Cusack, S.

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135(1), 39–51 (1979).
[Crossref] [PubMed]

Davies, D. E.

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

De Caterina, R.

G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovasc. Res. 63(4), 582–592 (2004).
[Crossref] [PubMed]

DeGroot, J.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Deng, X. H.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

Deng, X.-H.

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Desissaire, S.

O. G. Andriotis, S. Desissaire, and P. J. Thurner, “Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs,” ACS Nano 12(4), 3671–3680 (2018).
[Crossref] [PubMed]

Di Lullo, G.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Eaton, M.

J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
[Crossref] [PubMed]

Edginton, R. S.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Elrod, E.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Enwemeka, C. S.

G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, “Glycation-induced matrix stability in the rabbit achilles tendon,” Arch. Biochem. Biophys. 399(2), 174–180 (2002).
[Crossref] [PubMed]

Fabri, S.

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Feig, D. I.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Fioretto, D.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Fox, A. J.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Franke, F. S.

D. J. Keller and F. S. Franke, “Envelope reconstruction of probe microscope images,” Surf. Sci. 294(3), 409–419 (1993).
[Crossref]

Fratzl, P.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Fujii, N.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Fukatsu, R.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Fullerton, G. D.

G. D. Fullerton and A. Rahal, “Collagen structure: the molecular source of the tendon magic angle effect,” J. Magn. Reson. Imaging 25(2), 345–361 (2007).
[Crossref] [PubMed]

Funderburgh, J. L.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Galeski, A.

A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Garruto, R.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Genovese, F.

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

Genuth, S.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

Germann, M. W.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Gersch, M. S.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Goh, K. L.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

Grant, C. A.

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
[Crossref] [PubMed]

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
[Crossref]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Green, E.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Harley, R.

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
[Crossref] [PubMed]

Harris, P. E.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Hayashi, Y.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Heim, A. J.

A. J. Heim, T. J. Koob, and W. G. Matthews, “Low strain nanomechanics of collagen fibrils,” Biomacromolecules 8(11), 3298–3301 (2007).
[Crossref] [PubMed]

A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett. 89(18), 181902 (2006).
[Crossref]

Heinz, W. F.

W. F. Heinz and J. H. Hoh, “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol. 17(4), 143–150 (1999).
[Crossref] [PubMed]

Hoh, J. H.

W. F. Heinz and J. H. Hoh, “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol. 17(4), 143–150 (1999).
[Crossref] [PubMed]

Holmes, D. F.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

Horton, M. A.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
[Crossref] [PubMed]

Howarth, P. H.

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Hutter, J. L.

J. L. Hutter and J. Bechhoefer, “Calibration of atomic‐force microscope tips,” Rev. Sci. Instrum. 64(7), 1868–1873 (1993).
[Crossref]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

James, D.

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
[Crossref] [PubMed]

Johnson, R. J.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Kadler, K. E.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Kang, D.-H.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Karsdal, M. A.

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

Kastelic, J.

A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
[Crossref] [PubMed]

Katsamenis, O. L.

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Keller, D. J.

D. J. Keller and F. S. Franke, “Envelope reconstruction of probe microscope images,” Surf. Sci. 294(3), 409–419 (1993).
[Crossref]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Kirschner, D. A.

R. I. Price, S. Lees, and D. A. Kirschner, “X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration,” Int. J. Biol. Macromol. 20(1), 23–33 (1997).
[Crossref] [PubMed]

Knott, L.

A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mech. Ageing Dev. 106(1-2), 1–56 (1998).
[Crossref] [PubMed]

Kohn, R. R.

A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
[Crossref] [PubMed]

Koike, T.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Koob, T. J.

A. J. Heim, T. J. Koob, and W. G. Matthews, “Low strain nanomechanics of collagen fibrils,” Biomacromolecules 8(11), 3298–3301 (2007).
[Crossref] [PubMed]

A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett. 89(18), 181902 (2006).
[Crossref]

Kramer, R. Z.

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

Kudo, S.

Lachin, J. M.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

Lafeber, F. P.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Last, J. A.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Lederer, M. O.

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

Lees, S.

R. I. Price, S. Lees, and D. A. Kirschner, “X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration,” Int. J. Biol. Macromol. 20(1), 23–33 (1997).
[Crossref] [PubMed]

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

Lu, H.-Y.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

Lyons, T. J.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Madami, M.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Madsen, E. A.

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

Magnusson, S. P.

R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
[Crossref] [PubMed]

Maillard, L.

L. Maillard, “Action of amino acids on sugars. Formation of melanoidins in a methodical way,” Compt. rend 154, 66 (1912).

Makita, Z.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Manon-Jensen, T.

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

Manuyakorn, W.

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Marumo, K.

M. Saito and K. Marumo, “Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus,” Osteoporos. Int. 21(2), 195–214 (2010).
[Crossref] [PubMed]

Masic, A.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Mattana, S.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Matthews, W. G.

A. J. Heim, T. J. Koob, and W. G. Matthews, “Low strain nanomechanics of collagen fibrils,” Biomacromolecules 8(11), 3298–3301 (2007).
[Crossref] [PubMed]

A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett. 89(18), 181902 (2006).
[Crossref]

Mayville, P.

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

Mesquida, P.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
[Crossref] [PubMed]

Metzger, T. H.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Meyers, M. A.

V. R. Sherman, W. Yang, and M. A. Meyers, “The materials science of collagen,” J. Mech. Behav. Biomed. Mater. 52, 22–50 (2015).
[Crossref] [PubMed]

Miller, A.

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135(1), 39–51 (1979).
[Crossref] [PubMed]

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
[Crossref] [PubMed]

A. Miller and J. S. Wray, “Molecular packing in collagen,” Nature 230(5294), 437–439 (1971).
[Crossref] [PubMed]

Monnier, V. M.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

Moyer, P. J.

R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
[Crossref] [PubMed]

Nakagawa, T.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Nakashima, S.

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Ogawa, H.

Oliver, W. C.

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

Palombo, F.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Parry, D. A.

A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
[Crossref] [PubMed]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paul, R. G.

A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mech. Ageing Dev. 106(1-2), 1–56 (1998).
[Crossref] [PubMed]

Persikov, A. V.

B. Brodsky and A. V. Persikov, “Molecular structure of the collagen triple helix,” Adv. Protein Chem. 70, 301–339 (2005).
[Crossref] [PubMed]

Pharr, G. M.

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Polonsky, K. S.

K. S. Polonsky, “The past 200 years in diabetes,” N. Engl. J. Med. 367(14), 1332–1340 (2012).
[Crossref] [PubMed]

Price, R. I.

R. I. Price, S. Lees, and D. A. Kirschner, “X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration,” Int. J. Biol. Macromol. 20(1), 23–33 (1997).
[Crossref] [PubMed]

Purslow, P. P.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

Radford, S. E.

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
[Crossref] [PubMed]

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
[Crossref]

Rahal, A.

G. D. Fullerton and A. Rahal, “Collagen structure: the molecular source of the tendon magic angle effect,” J. Magn. Reson. Imaging 25(2), 345–361 (2007).
[Crossref] [PubMed]

Reddy, G. K.

G. K. Reddy, “Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon,” Exp. Diabesity Res. 5(2), 143–153 (2004).
[Crossref] [PubMed]

G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, “Glycation-induced matrix stability in the rabbit achilles tendon,” Arch. Biochem. Biophys. 399(2), 174–180 (2002).
[Crossref] [PubMed]

Reigle, K. L.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Reihl, O.

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

Richardson, S.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

Rodeo, S. A.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Saito, M.

M. Saito and K. Marumo, “Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus,” Osteoporos. Int. 21(2), 195–214 (2010).
[Crossref] [PubMed]

San Antonio, J. D.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sánchez-Lozada, L. G.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Sanderson, R. D.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Sasaki, N.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Sautin, Y.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Scarcelli, G.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Schmidt, A. M.

G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovasc. Res. 63(4), 582–592 (2004).
[Crossref] [PubMed]

A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
[Crossref] [PubMed]

Schuetz, R.

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Schuppan, D.

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

Segal, M. S.

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Sell, D. R.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

Shaw, J. N.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Shefelbine, S. J.

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

Sherman, V. R.

V. R. Sherman, W. Yang, and M. A. Meyers, “The materials science of collagen,” J. Mech. Behav. Biomed. Mater. 52, 22–50 (2015).
[Crossref] [PubMed]

Smith, S. T.

R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
[Crossref] [PubMed]

Stehno-Bittel, L.

G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, “Glycation-induced matrix stability in the rabbit achilles tendon,” Arch. Biochem. Biophys. 399(2), 174–180 (2002).
[Crossref] [PubMed]

Stern, D.

A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
[Crossref] [PubMed]

Stitt, A. W.

A. W. Stitt, “Advanced glycation: an important pathological event in diabetic and age related ocular disease,” Br. J. Ophthalmol. 85(6), 746–753 (2001).
[Crossref] [PubMed]

Stone, N.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Strauch, C.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

Strauch, C. M.

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

Sun, W.

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

Surber, C.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Suzuki, T.

Svensson, R. B.

R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
[Crossref] [PubMed]

Tamagnini, F.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

TeKoppele, J. M.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Thomson, N. H.

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
[Crossref] [PubMed]

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
[Crossref]

Thorpe, S. R.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Thurner, P. J.

O. G. Andriotis, S. Desissaire, and P. J. Thurner, “Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs,” ACS Nano 12(4), 3671–3680 (2018).
[Crossref] [PubMed]

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Tsuzuki, K.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Turner, K. R.

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

Vanleene, M.

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

Verzijl, N.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

Wakayama, I.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Warren, R. F.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Watanabe, S.

Wautier, J.-L.

A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
[Crossref] [PubMed]

Wenger, M. P. E.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Wess, T. J.

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

White, J. W.

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
[Crossref] [PubMed]

Winlove, C. P.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Wray, J. S.

A. Miller and J. S. Wray, “Molecular packing in collagen,” Nature 230(5294), 437–439 (1971).
[Crossref] [PubMed]

Yamakita, E.

Yan, S. D.

A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
[Crossref] [PubMed]

Yanagihara, R.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Yang, W.

V. R. Sherman, W. Yang, and M. A. Meyers, “The materials science of collagen,” J. Mech. Behav. Biomed. Mater. 52, 22–50 (2015).
[Crossref] [PubMed]

Ying, L.

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Yoshida, T.

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Zekonyte, J.

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

ACS Nano (1)

O. G. Andriotis, S. Desissaire, and P. J. Thurner, “Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs,” ACS Nano 12(4), 3671–3680 (2018).
[Crossref] [PubMed]

Acta Biomater. (1)

R. B. Svensson, S. T. Smith, P. J. Moyer, and S. P. Magnusson, “Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons,” Acta Biomater. 70, 270–280 (2018).
[Crossref] [PubMed]

Adv. Protein Chem. (1)

B. Brodsky and A. V. Persikov, “Molecular structure of the collagen triple helix,” Adv. Protein Chem. 70, 301–339 (2005).
[Crossref] [PubMed]

Am. J. Clin. Nutr. (1)

R. J. Johnson, M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sánchez-Lozada, “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” Am. J. Clin. Nutr. 86(4), 899–906 (2007).
[PubMed]

Am. J. Pathol. (1)

N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, and Z. Makita, “Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases,” Am. J. Pathol. 153(4), 1149–1155 (1998).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Effects of hydration on the mechanical response of individual collagen fibrils,” Appl. Phys. Lett. 92(23), 233902 (2008).
[Crossref]

A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett. 89(18), 181902 (2006).
[Crossref]

Appl. Spectrosc. (1)

Arch. Biochem. Biophys. (1)

G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, “Glycation-induced matrix stability in the rabbit achilles tendon,” Arch. Biochem. Biophys. 399(2), 174–180 (2002).
[Crossref] [PubMed]

Biomacromolecules (1)

A. J. Heim, T. J. Koob, and W. G. Matthews, “Low strain nanomechanics of collagen fibrils,” Biomacromolecules 8(11), 3298–3301 (2007).
[Crossref] [PubMed]

Biophys. J. (3)

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, “Tuning the elastic modulus of hydrated collagen fibrils,” Biophys. J. 97(11), 2985–2992 (2009).
[Crossref] [PubMed]

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J. 93(4), 1255–1263 (2007).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Biopolymers (1)

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

A. W. Stitt, “Advanced glycation: an important pathological event in diabetic and age related ocular disease,” Br. J. Ophthalmol. 85(6), 746–753 (2001).
[Crossref] [PubMed]

Cardiovasc. Res. (1)

G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovasc. Res. 63(4), 582–592 (2004).
[Crossref] [PubMed]

Circ. Res. (1)

A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circ. Res. 84(5), 489–497 (1999).
[Crossref] [PubMed]

Compt. rend (1)

L. Maillard, “Action of amino acids on sugars. Formation of melanoidins in a methodical way,” Compt. rend 154, 66 (1912).

Connect. Tissue Res. (1)

A. S. Craig, M. J. Birtles, J. F. Conway, and D. A. Parry, “An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age,” Connect. Tissue Res. 19(1), 51–62 (1989).
[Crossref] [PubMed]

Exp. Diabesity Res. (1)

G. K. Reddy, “Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon,” Exp. Diabesity Res. 5(2), 143–153 (2004).
[Crossref] [PubMed]

Int. J. Biol. Macromol. (1)

R. I. Price, S. Lees, and D. A. Kirschner, “X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration,” Int. J. Biol. Macromol. 20(1), 23–33 (1997).
[Crossref] [PubMed]

J. Biol. Chem. (2)

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[Crossref] [PubMed]

D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, and V. M. Monnier, “Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes,” J. Biol. Chem. 280(13), 12310–12315 (2005).
[Crossref] [PubMed]

J. Biomech. (1)

A. Galeski, J. Kastelic, E. Baer, and R. R. Kohn, “Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging,” J. Biomech. 10(11/12), 775–782 (1977).
[Crossref] [PubMed]

J. Biomech. Eng. (1)

K. L. Goh, D. F. Holmes, H.-Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess, “Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction,” J. Biomech. Eng. 130(2), 021011 (2008).
[Crossref] [PubMed]

J. Cell. Biochem. (1)

K. L. Reigle, G. Di Lullo, K. R. Turner, J. A. Last, I. Chervoneva, D. E. Birk, J. L. Funderburgh, E. Elrod, M. W. Germann, C. Surber, R. D. Sanderson, and J. D. San Antonio, “Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion,” J. Cell. Biochem. 104(5), 1684–1698 (2008).
[Crossref] [PubMed]

J. Diabetes Complications (1)

V. M. Monnier, D. R. Sell, C. Strauch, W. Sun, J. M. Lachin, P. A. Cleary, S. Genuth, and DCCT Research Group, “The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes,” J. Diabetes Complications 27(2), 141–149 (2013).
[Crossref] [PubMed]

J. Hepatol. (1)

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-Jensen, and D. Schuppan, “Collagen and tissue turnover as a function of age: Implications for fibrosis,” J. Hepatol. 64(1), 103–109 (2016).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

G. D. Fullerton and A. Rahal, “Collagen structure: the molecular source of the tendon magic angle effect,” J. Magn. Reson. Imaging 25(2), 345–361 (2007).
[Crossref] [PubMed]

J. Mater. Res. (1)

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

J. Mech. Behav. Biomed. Mater. (2)

V. R. Sherman, W. Yang, and M. A. Meyers, “The materials science of collagen,” J. Mech. Behav. Biomed. Mater. 52, 22–50 (2015).
[Crossref] [PubMed]

O. G. Andriotis, W. Manuyakorn, J. Zekonyte, O. L. Katsamenis, S. Fabri, P. H. Howarth, D. E. Davies, and P. J. Thurner, “Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation,” J. Mech. Behav. Biomed. Mater. 39, 9–26 (2014).
[Crossref] [PubMed]

J. Mol. Biol. (1)

S. Cusack and A. Miller, “Determination of the elastic constants of collagen by Brillouin light scattering,” J. Mol. Biol. 135(1), 39–51 (1979).
[Crossref] [PubMed]

J. Orthop. Res. (1)

A. J. Fox, A. Bedi, X. H. Deng, L. Ying, P. E. Harris, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model,” J. Orthop. Res. 29(6), 880–885 (2011).
[Crossref] [PubMed]

J. R. Soc. Interface (2)

O. G. Andriotis, S. W. Chang, M. Vanleene, P. H. Howarth, D. E. Davies, S. J. Shefelbine, M. J. Buehler, and P. J. Thurner, “Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model,” J. R. Soc. Interface 12(111), 20150701 (2015).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

J. Shoulder Elbow Surg. (1)

A. Bedi, A. J. Fox, P. E. Harris, X.-H. Deng, L. Ying, R. F. Warren, and S. A. Rodeo, “Diabetes mellitus impairs tendon-bone healing after rotator cuff repair,” J. Shoulder Elbow Surg. 19(7), 978–988 (2010).
[Crossref] [PubMed]

Mech. Ageing Dev. (2)

A. J. Bailey, “Molecular mechanisms of ageing in connective tissues,” Mech. Ageing Dev. 122(7), 735–755 (2001).
[Crossref] [PubMed]

A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mech. Ageing Dev. 106(1-2), 1–56 (1998).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

K. S. Polonsky, “The past 200 years in diabetes,” N. Engl. J. Med. 367(14), 1332–1340 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Masic, L. Bertinetti, R. Schuetz, S.-W. Chang, T. H. Metzger, M. J. Buehler, and P. Fratzl, “Osmotic pressure induced tensile forces in tendon collagen,” Nat. Commun. 6(1), 5942 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Nat. Struct. Biol. (1)

R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6(5), 454–457 (1999).
[Crossref] [PubMed]

Nature (2)

A. Miller and J. S. Wray, “Molecular packing in collagen,” Nature 230(5294), 437–439 (1971).
[Crossref] [PubMed]

R. Harley, D. James, A. Miller, and J. W. White, “Phonons and the elastic moduli of collagen and muscle,” Nature 267(5608), 285–287 (1977).
[Crossref] [PubMed]

Osteoporos. Int. (1)

M. Saito and K. Marumo, “Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus,” Osteoporos. Int. 21(2), 195–214 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

J. L. Hutter and J. Bechhoefer, “Calibration of atomic‐force microscope tips,” Rev. Sci. Instrum. 64(7), 1868–1873 (1993).
[Crossref]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Science (1)

J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, “Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution,” Science 266(5182), 75–81 (1994).
[Crossref] [PubMed]

Surf. Sci. (1)

D. J. Keller and F. S. Franke, “Envelope reconstruction of probe microscope images,” Surf. Sci. 294(3), 409–419 (1993).
[Crossref]

Trends Biotechnol. (1)

W. F. Heinz and J. H. Hoh, “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol. 17(4), 143–150 (1999).
[Crossref] [PubMed]

Other (3)

B. P. Berne, R, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Dover Publications, 2000).

R. Prevedel, A. Diz-Muñoz, G. Ruocco, and G. Antonacci, “Brillouin microscopy-a revolutionary tool for mechanobiology?” arXiv preprint arXiv:1901.02006 (2019).

F. Palombo and D. Fioretto, “Brillouin Light Scattering: Applications in Biomedical Sciences,” arXiv preprint arXiv:1901.05176 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (A). Overview height topography scan of collagen fibrils on a glass slide showing a cross-section profile (inset, scale bars correspond to inset only) and examples of the selected collagen fibrils (rectangles, A). (A, 1-3) AFM height topography scans in air of the three selected collagen fibrils. (B). Characteristic D-periodicity with which collagen fibrils are distinguishable from other proteins. (C). The overview scan in PBS and (C, 1-3) the force volume maps of the individual collagen fibrils. (D). Characteristic force-indentation curve from the crest of the collagen fibril. In both air and PBS, the scan size of the overview images was 20 μm x 20 μm and that of the individual collagen fibrils was 1.5 μm x 8 μm.
Fig. 2
Fig. 2 Fibril height measurements from the height channel of the atomic force microscopy image or force-volume map. A. Height topography from the force-volume map constructed at contact point (zero force). The highest points, i.e. the crest of the collagen fibril, are highlighted with red points. The green line across the collagen fibril indicates the location selected as an example cross-section shown in (B). B. Line profile showing the estimation of fibril height. The fibril height was defined as the difference between the average baseline height and the maximum height (indicated with a red point) per line profile. The average height of the collagen fibril shown in A was 238.2 ± 5.2 nm (average ± standard deviation).
Fig. 3
Fig. 3 Sketch of the microscope setup used for BLS measurements. Inset shows an example of the projected BLS spectra as measured on the EM CCD camera.
Fig. 4
Fig. 4 Spatial maps of ωB and corresponding widefield transmitted light images. (Field of view for widefield images is 45 μm x 45 μm).
Fig. 5
Fig. 5 A. and B. Normalized height profiles to the maximum height in air from a control and ribose-treated collagen fibril, respectively. C. Swelling, i.e. fold-increase in collagen fibril height, for control and ribose-treated. D. Indentation modulus values from control and ribose-treated collagen fibrils.
Fig. 6
Fig. 6 Characteristic least-squares data fit for tokes Peaks of ribose treated sample.
Fig. 7
Fig. 7 (A): Plot of average frequency shift (ωB) for the two observed Brillouin scattering peaks in control (black solid-line) and ribose-treated (red, dashed-line) collagen fibrils during dehydration. B. Example Brillouin light spectra at 120 min of dehydration for the control (top, black) and ribose-treated collagen fibrils (bottom, red).
Fig. 8
Fig. 8 (A): Sketch showing two different phonon wavevectors that can be coupled to with high NA objective. (B) [left]: BLS frequency shift ωB of the higher frequency peak during dehydration (inset: corrected FHWM of peak after deconvolution). [Right]: Corresponding change in the relative peak intensity, IB. (C): Same as (A), but for the lower frequency peak.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E s a m p l e = β π 2 ( 1 v 2 ) S C A c

Metrics