Abstract

Current measures for assessing the viability of donor kidneys are lacking. Optical coherence tomography (OCT) can image subsurface tissue morphology to supplement current measures and potentially improve prediction of post-transplant function. OCT imaging was performed on donor kidneys before and immediately after implantation during 169 human kidney transplant surgeries. A system for automated image analysis was developed to measure structural parameters of the kidney’s proximal convoluted tubules (PCTs) visualized in the OCT images. The association of these structural parameters with post-transplant function was investigated. This study included kidneys from live and deceased donors. 88 deceased donor kidneys in this study were stored by static cold storage (SCS) and an additional 15 were preserved by hypothermic machine perfusion (HMP). A subset of both SCS and HMP deceased donor kidneys were classified as expanded criteria donor (ECD) kidneys, with elevated risk of poor post-transplant function. Post-transplant function was characterized as either immediate graft function (IGF) or delayed graft function (DGF). In ECD kidneys stored by SCS, increased PCT lumen diameter was found to predict DGF both prior to implantation and following reperfusion. In SCD kidneys preserved by HMP, reduced distance between adjacent lumen following reperfusion was found to predict DGF. Results suggest that OCT measurements may be useful for predicting post-transplant function in ECD kidneys and kidneys stored by HMP. OCT analysis of donor kidneys may aid in allocation of kidneys to expand the donor pool as well as help predict post-transplant function in transplanted kidneys to inform post-operative care.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT)

Qian Li, Maristela L. Onozato, Peter M. Andrews, Chao-Wei Chen, Andrew Paek, Renee Naphas, Shuai Yuan, James Jiang, Alex Cable, and Yu Chen
Opt. Express 17(18) 16000-16016 (2009)

Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection

Jingmao Chi, Thet Zaw, Iliana Cardona, Mujtaba Hosnain, Neha Garg, Heather R. Lefkowitz, Peter Tolias, and Henry Du
Biomed. Opt. Express 6(3) 761-769 (2015)

Optical properties of acute kidney injury measured by quantitative phase imaging

Sungbea Ban, Eunjung Min, Songyee Baek, Hyug Moo Kwon, Gabriel Popescu, and Woonggyu Jung
Biomed. Opt. Express 9(3) 921-932 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
    [Crossref] [PubMed]
  2. P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
    [Crossref] [PubMed]
  3. J. Pascual, J. Zamora, and J. D. Pirsch, “A Systematic Review of Kidney Transplantation From Expanded Criteria Donors,” Am. J. Kidney Dis. 52(3), 553–586 (2008).
    [Crossref] [PubMed]
  4. Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
    [Crossref] [PubMed]
  5. S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
    [Crossref] [PubMed]
  6. A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
    [PubMed]
  7. M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
    [Crossref] [PubMed]
  8. R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
    [Crossref] [PubMed]
  9. M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
    [Crossref] [PubMed]
  10. M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
    [Crossref] [PubMed]
  11. J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
    [Crossref] [PubMed]
  12. P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
    [Crossref]
  13. P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
    [Crossref] [PubMed]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  15. Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
    [Crossref] [PubMed]
  16. P. M. Andrews and Y. Chen, “Using Optical Coherence Tomography (OCT) to Evaluate Human Donor Kidneys Prior to and Following Transplantation,” J. Nephrol. Ther. 04(01), 1000151 (2014).
    [Crossref]
  17. A. B. Farris and R. B. Colvin, “Renal interstitial fibrosis: mechanisms and evaluation,” Curr. Opin. Nephrol. Hypertens. 21(3), 289–300 (2012).
    [Crossref] [PubMed]
  18. G. W. Moeckel, “Pathologic Perspectives on Acute Tubular Injury Assessment in the Kidney Biopsy,” Semin. Nephrol. 38(1), 21–30 (2018).
    [Crossref] [PubMed]
  19. P. Boor, T. Ostendorf, and J. Floege, “Renal fibrosis: novel insights into mechanisms and therapeutic targets,” Nat. Rev. Nephrol. 6(11), 643–656 (2010).
    [Crossref] [PubMed]
  20. W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
    [Crossref] [PubMed]
  21. S. M. Flechner, J. Kobashigawa, and G. Klintmalm, “Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity,” Clin. Transplant. 22(1), 1–15 (2008).
    [PubMed]
  22. B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
    [Crossref] [PubMed]
  23. Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
    [Crossref] [PubMed]
  24. S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
    [Crossref] [PubMed]
  25. M. Schmid, “Versatile Wand Tool,” (2015).
  26. A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
    [Crossref] [PubMed]
  27. H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
    [Crossref] [PubMed]
  28. R. A. Risdon, J. C. Sloper, and H. E. De Wardener, “Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis,” Lancet 2(7564), 363–366 (1968).
    [Crossref] [PubMed]
  29. G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
    [PubMed]
  30. R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
    [Crossref] [PubMed]
  31. S. Lovisa, M. Zeisberg, and R. Kalluri, “Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis,” Trends Endocrinol. Metab. 27(10), 681–695 (2016).
    [Crossref] [PubMed]
  32. Y. Ovadya and V. Krizhanovsky, “A new Twist in kidney fibrosis,” Nat. Med. 21(9), 975–977 (2015).
    [Crossref] [PubMed]
  33. J. R. Schelling, “Tubular atrophy in the pathogenesis of chronic kidney disease progression,” Pediatr. Nephrol. 31(5), 693–706 (2016).
    [Crossref] [PubMed]
  34. M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
    [Crossref] [PubMed]
  35. R. L. Chevalier, “The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction,” Am. J. Physiol. Renal Physiol. 311(1), F145–F161 (2016).
    [Crossref] [PubMed]
  36. S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
    [Crossref] [PubMed]
  37. A. B. Maunsbach, G. H. Giebisch, and B. A. Stanton, “Effects of flow rate on proximal tubule ultrastructure,” Am. J. Physiol. 253(3 Pt 2), F582–F587 (1987).
    [PubMed]
  38. J. V. Bonventre and L. Yang, “Cellular pathophysiology of ischemic acute kidney injury,” J. Clin. Invest. 121(11), 4210–4221 (2011).
    [Crossref] [PubMed]
  39. S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
    [Crossref] [PubMed]
  40. P. Gong, S. Es’haghian, K.-A. Harms, A. Murray, S. Rea, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography,” Biomed. Opt. Express 7(12), 4886–4898 (2016).
    [Crossref] [PubMed]

2018 (1)

G. W. Moeckel, “Pathologic Perspectives on Acute Tubular Injury Assessment in the Kidney Biopsy,” Semin. Nephrol. 38(1), 21–30 (2018).
[Crossref] [PubMed]

2017 (7)

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

2016 (5)

S. Lovisa, M. Zeisberg, and R. Kalluri, “Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis,” Trends Endocrinol. Metab. 27(10), 681–695 (2016).
[Crossref] [PubMed]

J. R. Schelling, “Tubular atrophy in the pathogenesis of chronic kidney disease progression,” Pediatr. Nephrol. 31(5), 693–706 (2016).
[Crossref] [PubMed]

R. L. Chevalier, “The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction,” Am. J. Physiol. Renal Physiol. 311(1), F145–F161 (2016).
[Crossref] [PubMed]

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

P. Gong, S. Es’haghian, K.-A. Harms, A. Murray, S. Rea, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography,” Biomed. Opt. Express 7(12), 4886–4898 (2016).
[Crossref] [PubMed]

2015 (2)

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Y. Ovadya and V. Krizhanovsky, “A new Twist in kidney fibrosis,” Nat. Med. 21(9), 975–977 (2015).
[Crossref] [PubMed]

2014 (2)

P. M. Andrews and Y. Chen, “Using Optical Coherence Tomography (OCT) to Evaluate Human Donor Kidneys Prior to and Following Transplantation,” J. Nephrol. Ther. 04(01), 1000151 (2014).
[Crossref]

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

2013 (1)

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

2012 (1)

A. B. Farris and R. B. Colvin, “Renal interstitial fibrosis: mechanisms and evaluation,” Curr. Opin. Nephrol. Hypertens. 21(3), 289–300 (2012).
[Crossref] [PubMed]

2011 (2)

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

J. V. Bonventre and L. Yang, “Cellular pathophysiology of ischemic acute kidney injury,” J. Clin. Invest. 121(11), 4210–4221 (2011).
[Crossref] [PubMed]

2010 (4)

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

P. Boor, T. Ostendorf, and J. Floege, “Renal fibrosis: novel insights into mechanisms and therapeutic targets,” Nat. Rev. Nephrol. 6(11), 643–656 (2010).
[Crossref] [PubMed]

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

S. M. Flechner, J. Kobashigawa, and G. Klintmalm, “Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity,” Clin. Transplant. 22(1), 1–15 (2008).
[PubMed]

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

J. Pascual, J. Zamora, and J. D. Pirsch, “A Systematic Review of Kidney Transplantation From Expanded Criteria Donors,” Am. J. Kidney Dis. 52(3), 553–586 (2008).
[Crossref] [PubMed]

2001 (1)

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

2000 (1)

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

1999 (2)

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1987 (1)

A. B. Maunsbach, G. H. Giebisch, and B. A. Stanton, “Effects of flow rate on proximal tubule ultrastructure,” Am. J. Physiol. 253(3 Pt 2), F582–F587 (1987).
[PubMed]

1973 (1)

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

1968 (1)

R. A. Risdon, J. C. Sloper, and H. E. De Wardener, “Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis,” Lancet 2(7564), 363–366 (1968).
[Crossref] [PubMed]

Adler, D. C.

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Agodoa, L. Y.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Anderson, E.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Andrews, P. M.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

P. M. Andrews and Y. Chen, “Using Optical Coherence Tomography (OCT) to Evaluate Human Donor Kidneys Prior to and Following Transplantation,” J. Nephrol. Ther. 04(01), 1000151 (2014).
[Crossref]

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Anjum, S.

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Asderakis, A.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Bae, S.

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Bailey, E.

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

Banasiak, P.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Barry, S. E.

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Barth, R. N.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Bartlett, S. T.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Beatini, M.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Bonventre, J. V.

J. V. Bonventre and L. Yang, “Cellular pathophysiology of ischemic acute kidney injury,” J. Clin. Invest. 121(11), 4210–4221 (2011).
[Crossref] [PubMed]

Boom, H.

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

Boor, P.

P. Boor, T. Ostendorf, and J. Floege, “Renal fibrosis: novel insights into mechanisms and therapeutic targets,” Nat. Rev. Nephrol. 6(11), 643–656 (2010).
[Crossref] [PubMed]

Bossert, W. H.

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

Brennan, D. C.

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

Brenner, B. M.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Buurman, W. A.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Cable, A.

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

Cable, A. E.

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Campos, L.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chavez, R.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Chen, C.-W.

Chen, Y.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

P. M. Andrews and Y. Chen, “Using Optical Coherence Tomography (OCT) to Evaluate Human Donor Kidneys Prior to and Following Transplantation,” J. Nephrol. Ther. 04(01), 1000151 (2014).
[Crossref]

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Cherikh, W. S.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Chevalier, R. L.

R. L. Chevalier, “The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction,” Am. J. Physiol. Renal Physiol. 311(1), F145–F161 (2016).
[Crossref] [PubMed]

Christiaans, M. H.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Coca, S. G.

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

Cole, E. H.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Colvin, R. B.

A. B. Farris and R. B. Colvin, “Renal interstitial fibrosis: mechanisms and evaluation,” Curr. Opin. Nephrol. Hypertens. 21(3), 289–300 (2012).
[Crossref] [PubMed]

Cooper, M.

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Cortell, S.

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

Davidman, M.

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

de Fijter, J. W.

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

De Wardener, H. E.

R. A. Risdon, J. C. Sloper, and H. E. De Wardener, “Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis,” Lancet 2(7564), 363–366 (1968).
[Crossref] [PubMed]

Desai, N. M.

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Doshi, M. D.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Drachenberg, C. B.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Dyrla, P.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Es’haghian, S.

Et, A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Falola, R.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Farris, A. B.

A. B. Farris and R. B. Colvin, “Renal interstitial fibrosis: mechanisms and evaluation,” Curr. Opin. Nephrol. Hypertens. 21(3), 289–300 (2012).
[Crossref] [PubMed]

Feng, S.

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

Ficek, J.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Flechner, S. M.

S. M. Flechner, J. Kobashigawa, and G. Klintmalm, “Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity,” Clin. Transplant. 22(1), 1–15 (2008).
[PubMed]

Floege, J.

P. Boor, T. Ostendorf, and J. Floege, “Renal fibrosis: novel insights into mechanisms and therapeutic targets,” Nat. Rev. Nephrol. 6(11), 643–656 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Formica, R. N.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

Fuchinoue, S.

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

Fujimoto, J. G.

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Furness, P. N.

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

Gennari, F. J.

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

Giebisch, G. H.

A. B. Maunsbach, G. H. Giebisch, and B. A. Stanton, “Effects of flow rate on proximal tubule ultrastructure,” Am. J. Physiol. 253(3 Pt 2), F582–F587 (1987).
[PubMed]

Gong, P.

Gong, W.

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

Green, E. P.

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grinyò, J.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Guo, H.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Gustafson, S. K.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Hall, I. E.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Hanson, J. A.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Haririan, A.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Harms, K.-A.

Harris, K. P.

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

Hart, A.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Hasz, R. D.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heilman, R. L.

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

Hené, R.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Hoitsma, A. J.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Horvath, S.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, S.-W.

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Huber, R. A.

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Idu, M. M.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Ijzermans, J. N.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Ilsley, J. N.

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

Irish, W. D.

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

Israni, A. K.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Iwadoh, K.

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

Jiang, J.

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Jin, L.

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

Kade, G.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Kalluri, R.

S. Lovisa, M. Zeisberg, and R. Kalluri, “Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis,” Trends Endocrinol. Metab. 27(10), 681–695 (2016).
[Crossref] [PubMed]

Kaplan, B.

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Kaposztas, Z.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Kasiske, B. L.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Klintmalm, G.

S. M. Flechner, J. Kobashigawa, and G. Klintmalm, “Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity,” Clin. Transplant. 22(1), 1–15 (2008).
[PubMed]

Kobashigawa, J.

S. M. Flechner, J. Kobashigawa, and G. Klintmalm, “Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity,” Clin. Transplant. 22(1), 1–15 (2008).
[PubMed]

Krizhanovsky, V.

Y. Ovadya and V. Krizhanovsky, “A new Twist in kidney fibrosis,” Nat. Med. 21(9), 975–977 (2015).
[Crossref] [PubMed]

Kucheryavaya, A.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Leichtman, A. B.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Li, Q.

Li, Z.

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lovisa, S.

S. Lovisa, M. Zeisberg, and R. Kalluri, “Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis,” Trends Endocrinol. Metab. 27(10), 681–695 (2016).
[Crossref] [PubMed]

Lubas, A.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Luo, X.

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Mallat, M. J. K.

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

Massie, A. B.

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Maunsbach, A. B.

A. B. Maunsbach, G. H. Giebisch, and B. A. Stanton, “Effects of flow rate on proximal tubule ultrastructure,” Am. J. Physiol. 253(3 Pt 2), F582–F587 (1987).
[PubMed]

McLaughlin, R. A.

Meier-Kriesche, H.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Milford, E. L.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Moeckel, G. W.

G. W. Moeckel, “Pathologic Perspectives on Acute Tubular Injury Assessment in the Kidney Biopsy,” Semin. Nephrol. 38(1), 21–30 (2018).
[Crossref] [PubMed]

Moss, A.

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

Munivenkatappa, R. B.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Murray, A.

Nagaraja, P.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Nakajima, I.

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

Naphas, R.

Nicholson, M. L.

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

Niemczyk, S.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Ojo, A. O.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Okechukwu, C. N.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Onozato, M. L.

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Ostendorf, T.

P. Boor, T. Ostendorf, and J. Floege, “Renal fibrosis: novel insights into mechanisms and therapeutic targets,” Nat. Rev. Nephrol. 6(11), 643–656 (2010).
[Crossref] [PubMed]

Ovadya, Y.

Y. Ovadya and V. Krizhanovsky, “A new Twist in kidney fibrosis,” Nat. Med. 21(9), 975–977 (2015).
[Crossref] [PubMed]

Paek, A.

Papadimitriou, J. C.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Parikh, C. R.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

Pascual, J.

J. Pascual, J. Zamora, and J. D. Pirsch, “A Systematic Review of Kidney Transplantation From Expanded Criteria Donors,” Am. J. Kidney Dis. 52(3), 553–586 (2008).
[Crossref] [PubMed]

Paul, L. C.

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

Perencevich, E. N.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Philosophe, B.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Pirsch, J. D.

J. Pascual, J. Zamora, and J. D. Pirsch, “A Systematic Review of Kidney Transplantation From Expanded Criteria Donors,” Am. J. Kidney Dis. 52(3), 553–586 (2008).
[Crossref] [PubMed]

Ploeg, R. J.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Poggio, E. D.

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

Ponte, M. L.

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

Port, F. K.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qin, J.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Rasetto, F.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Rea, S.

Reddy, K. S.

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

Reese, P. P.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Remuzzi, G.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Ringers, J.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Risdon, R. A.

R. A. Risdon, J. C. Sloper, and H. E. De Wardener, “Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis,” Lancet 2(7564), 363–366 (1968).
[Crossref] [PubMed]

Roberts, G. W.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Ruggenenti, P.

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

Ryczek, R.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Sampson, D. D.

Schaubel, D. E.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Schelling, J. R.

J. R. Schelling, “Tubular atrophy in the pathogenesis of chronic kidney disease progression,” Pediatr. Nephrol. 31(5), 693–706 (2016).
[Crossref] [PubMed]

Schmid, M.

M. Schmid, “Versatile Wand Tool,” (2015).

Schneditz, D.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Schnitzler, M. A.

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

Schröppel, B.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, W. B.

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

Schweitzer, E. J.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Segev, D. L.

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Skeans, M. A.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Sloper, J. C.

R. A. Risdon, J. C. Sloper, and H. E. De Wardener, “Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis,” Lancet 2(7564), 363–366 (1968).
[Crossref] [PubMed]

Smith, J. M.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Smith, T.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Snoeijs, M. G.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Snyder, J. J.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Stanton, B. A.

A. B. Maunsbach, G. H. Giebisch, and B. A. Stanton, “Effects of flow rate on proximal tubule ultrastructure,” Am. J. Physiol. 253(3 Pt 2), F582–F587 (1987).
[PubMed]

Stephens, M.

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

Stewart, D. E.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szamotulska, K.

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

Tang, Q.

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Thiessen-Philbrook, H.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Thom, K. A.

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

Tojimbara, T.

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

Tomita, Y.

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

van Heurn, L. W. E.

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

Verbesey, J.

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

Wainright, J. L.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Wang, B.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Wang, H.-W.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

Wang, R. K.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Weng, F. L.

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

Wierwille, J.

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

Williams, S.

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

Wolfe, R. A.

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

Wood, F. M.

Woodbury, M.

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

Wu, T.

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

Yang, L.

J. V. Bonventre and L. Yang, “Cellular pathophysiology of ischemic acute kidney injury,” J. Clin. Invest. 121(11), 4210–4221 (2011).
[Crossref] [PubMed]

Yarlagadda, S. G.

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

Yousefi, S.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Yuan, S.

Zamora, J.

J. Pascual, J. Zamora, and J. D. Pirsch, “A Systematic Review of Kidney Transplantation From Expanded Criteria Donors,” Am. J. Kidney Dis. 52(3), 553–586 (2008).
[Crossref] [PubMed]

Zeisberg, M.

S. Lovisa, M. Zeisberg, and R. Kalluri, “Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis,” Trends Endocrinol. Metab. 27(10), 681–695 (2016).
[Crossref] [PubMed]

Zhi, Z.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

Zwinderman, A. H.

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

Am. J. Kidney Dis. (1)

J. Pascual, J. Zamora, and J. D. Pirsch, “A Systematic Review of Kidney Transplantation From Expanded Criteria Donors,” Am. J. Kidney Dis. 52(3), 553–586 (2008).
[Crossref] [PubMed]

Am. J. Physiol. (1)

A. B. Maunsbach, G. H. Giebisch, and B. A. Stanton, “Effects of flow rate on proximal tubule ultrastructure,” Am. J. Physiol. 253(3 Pt 2), F582–F587 (1987).
[PubMed]

Am. J. Physiol. Renal Physiol. (1)

R. L. Chevalier, “The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction,” Am. J. Physiol. Renal Physiol. 311(1), F145–F161 (2016).
[Crossref] [PubMed]

Am. J. Transplant. (4)

R. B. Munivenkatappa, E. J. Schweitzer, J. C. Papadimitriou, C. B. Drachenberg, K. A. Thom, E. N. Perencevich, A. Haririan, F. Rasetto, M. Cooper, L. Campos, R. N. Barth, S. T. Bartlett, and B. Philosophe, “The Maryland Aggregate Pathology Index: A Deceased Donor Kidney Biopsy Scoring System for Predicting Graft Failure,” Am. J. Transplant. 8(11), 2316–2324 (2008).
[Crossref] [PubMed]

W. D. Irish, J. N. Ilsley, M. A. Schnitzler, S. Feng, and D. C. Brennan, “A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation,” Am. J. Transplant. 10(10), 2279–2286 (2010).
[Crossref] [PubMed]

A. Hart, J. M. Smith, M. A. Skeans, S. K. Gustafson, D. E. Stewart, W. S. Cherikh, J. L. Wainright, A. Kucheryavaya, M. Woodbury, J. J. Snyder, B. L. Kasiske, and A. K. Israni, “OPTN/SRTR 2015 Annual Data Report: Kidney,” Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
[Crossref] [PubMed]

S. Bae, A. B. Massie, X. Luo, S. Anjum, N. M. Desai, and D. L. Segev, “Changes in Discard Rate After the Introduction of the Kidney Donor Profile Index (KDPI),” Am. J. Transplant. 16(7), 2202–2207 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Clin. Transplant. (1)

S. M. Flechner, J. Kobashigawa, and G. Klintmalm, “Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity,” Clin. Transplant. 22(1), 1–15 (2008).
[PubMed]

Curr. Opin. Nephrol. Hypertens. (1)

A. B. Farris and R. B. Colvin, “Renal interstitial fibrosis: mechanisms and evaluation,” Curr. Opin. Nephrol. Hypertens. 21(3), 289–300 (2012).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Z. Li, Q. Tang, L. Jin, P. M. Andrews, and Y. Chen, “Monitoring Kidney Microanatomy Changes During Ischemia-Reperfusion Process Using Texture Analysis of OCT Images,” IEEE Photonics J. 9(2), 4000110 (2017).
[Crossref] [PubMed]

Int. Urol. Nephrol. (1)

A. Lubas, G. Kade, R. Ryczek, P. Banasiak, P. Dyrla, K. Szamotulska, D. Schneditz, and S. Niemczyk, “Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease,” Int. Urol. Nephrol. 49(9), 1627–1635 (2017).
[Crossref] [PubMed]

J. Am. Soc. Nephrol. (3)

G. Remuzzi, J. Grinyò, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and B. M. Brenner, “Early experience with dual kidney transplantation in adults using expanded donor criteria,” J. Am. Soc. Nephrol. 10(12), 2591–2598 (1999).
[PubMed]

A. O. Ojo, J. A. Hanson, H. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” J. Am. Soc. Nephrol. 12(3), 589–597 (2001).
[PubMed]

M. G. Snoeijs, D. E. Schaubel, R. Hené, A. J. Hoitsma, M. M. Idu, J. N. Ijzermans, R. J. Ploeg, J. Ringers, M. H. Christiaans, W. A. Buurman, and L. W. E. van Heurn, “Kidneys from donors after cardiac death provide survival benefit,” J. Am. Soc. Nephrol. 21(6), 1015–1021 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

B. Wang, H.-W. Wang, H. Guo, E. Anderson, Q. Tang, T. Wu, R. Falola, T. Smith, P. M. Andrews, and Y. Chen, “Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease,” J. Biomed. Opt. 22(12), 1–11 (2017).
[Crossref] [PubMed]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt. 18(8), 086004 (2013).
[Crossref] [PubMed]

J. Clin. Invest. (2)

S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, and M. L. Ponte, “A definition of proximal and distal tubular compliance. Practical and theoretical implications,” J. Clin. Invest. 52(9), 2330–2339 (1973).
[Crossref] [PubMed]

J. V. Bonventre and L. Yang, “Cellular pathophysiology of ischemic acute kidney injury,” J. Clin. Invest. 121(11), 4210–4221 (2011).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

P. M. Andrews, H.-W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence tomography of the living human kidney,” J. Innov. Opt. Health Sci. 7(2), 1350064 (2014).
[Crossref]

J. Nephrol. Ther. (1)

P. M. Andrews and Y. Chen, “Using Optical Coherence Tomography (OCT) to Evaluate Human Donor Kidneys Prior to and Following Transplantation,” J. Nephrol. Ther. 04(01), 1000151 (2014).
[Crossref]

J. Urol. (1)

M. L. Onozato, P. M. Andrews, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Optical coherence tomography of human kidney,” J. Urol. 183(5), 2090–2094 (2010).
[Crossref] [PubMed]

Kidney Int. (1)

H. Boom, M. J. K. Mallat, J. W. de Fijter, A. H. Zwinderman, and L. C. Paul, “Delayed graft function influences renal function, but not survival,” Kidney Int. 58(2), 859–866 (2000).
[Crossref] [PubMed]

Lab. Invest. (2)

J. Wierwille, P. M. Andrews, M. L. Onozato, J. Jiang, A. Cable, and Y. Chen, “In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography,” Lab. Invest. 91(11), 1596–1604 (2011).
[Crossref] [PubMed]

P. M. Andrews, Y. Chen, M. L. Onozato, S.-W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[Crossref] [PubMed]

Lancet (1)

R. A. Risdon, J. C. Sloper, and H. E. De Wardener, “Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis,” Lancet 2(7564), 363–366 (1968).
[Crossref] [PubMed]

Nat. Med. (1)

Y. Ovadya and V. Krizhanovsky, “A new Twist in kidney fibrosis,” Nat. Med. 21(9), 975–977 (2015).
[Crossref] [PubMed]

Nat. Rev. Nephrol. (1)

P. Boor, T. Ostendorf, and J. Floege, “Renal fibrosis: novel insights into mechanisms and therapeutic targets,” Nat. Rev. Nephrol. 6(11), 643–656 (2010).
[Crossref] [PubMed]

Nephrol. Dial. Transplant. (1)

S. G. Yarlagadda, S. G. Coca, R. N. Formica, E. D. Poggio, and C. R. Parikh, “Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis,” Nephrol. Dial. Transplant. 24(3), 1039–1047 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Pediatr. Nephrol. (1)

J. R. Schelling, “Tubular atrophy in the pathogenesis of chronic kidney disease progression,” Pediatr. Nephrol. 31(5), 693–706 (2016).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Semin. Nephrol. (1)

G. W. Moeckel, “Pathologic Perspectives on Acute Tubular Injury Assessment in the Kidney Biopsy,” Semin. Nephrol. 38(1), 21–30 (2018).
[Crossref] [PubMed]

Transplant. Proc. (1)

Y. Tomita, T. Tojimbara, K. Iwadoh, I. Nakajima, and S. Fuchinoue, “Long-Term Outcomes in Kidney Transplantation From Expanded-Criteria Donors After Circulatory Death,” Transplant. Proc. 49(1), 45–48 (2017).
[Crossref] [PubMed]

Transplantation (4)

P. Nagaraja, G. W. Roberts, M. Stephens, S. Horvath, Z. Kaposztas, R. Chavez, and A. Asderakis, “Impact of Expanded Criteria Variables on Outcomes of Kidney Transplantation from Donors After Cardiac Death,” Transplantation 99(1), 226–231 (2015).
[Crossref] [PubMed]

R. L. Heilman, E. P. Green, K. S. Reddy, A. Moss, and B. Kaplan, “Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation,” Transplantation 101(7), 1514–1517 (2017).
[Crossref] [PubMed]

M. D. Doshi, P. P. Reese, I. E. Hall, B. Schröppel, J. Ficek, R. N. Formica, F. L. Weng, R. D. Hasz, H. Thiessen-Philbrook, and C. R. Parikh, “Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80,” Transplantation 101(6), 1125–1133 (2017).
[Crossref] [PubMed]

M. L. Nicholson, E. Bailey, S. Williams, K. P. Harris, and P. N. Furness, “Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection,” Transplantation 68(2), 236–241 (1999).
[Crossref] [PubMed]

Trends Endocrinol. Metab. (1)

S. Lovisa, M. Zeisberg, and R. Kalluri, “Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis,” Trends Endocrinol. Metab. 27(10), 681–695 (2016).
[Crossref] [PubMed]

Other (1)

M. Schmid, “Versatile Wand Tool,” (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1 Hierarchy classification of transplant groups with all transplants (blue tier 1) divided into live and deceased donor kidney transplants (blue tier 2). DDKTs are further divided into subgroups based on storage method (blue tier 3). DDKTs stored by SCS and HMP are further divided into subgroups based on risk of graft failure (blue tier 4). Each end-tier transplant group is divided into recovery groups based on requirement of dialysis (green and red).
Fig. 2
Fig. 2 Representative B-scan captured in the operating room of a donor kidney (pre-implantation) (a) The original greyscale B-scan. (b) The Tegaderm film highlighted in red, the renal capsule highlighted in blue and the kidney cortex highlighted in green.
Fig. 3
Fig. 3 Cropped portions of B-scans of donor kidneys with a thin renal capsule (a), thick renal capsule (b), small degree of adipose present above the renal capsule (c) and higher degree of adipose present (d). Yellow arrows indicate the thickness of the renal capsule (a, b) and adipose tissue (c, d).
Fig. 4
Fig. 4 Representative B-scan independently segmented by 2 manual raters. Selections by the first rater are indicated in red while selections by the second rater are indicated in blue. Cyan indicates an overlap in selection by both raters.
Fig. 5
Fig. 5 (a) Section of a B-scan with no kidney. The white horizontal lines in the bottom third of the image result from the Tegaderm. The vertical arrow represents the location of a single A-scan with a corresponding standard deviation in intensity values of 34.3. The average of all A-scans across the image is 37.8. (b) Section of a B-scan with kidney. The vertical arrow represents the location of a single A-scan with a corresponding standard deviation in intensity values of 56.1. The average of all A-scans across the image is 58.4. (c) Histogram representing the average standard deviation of all images manually marked as empty (blue) and all images which contained quantifiable cortex and were manually segmented (red).
Fig. 6
Fig. 6 (a) Original section of B-scan with high reflection. (b) Section of the same high reflection B-scan following application of a horizontal blurring filter. (c) Binary mask with all white portions representing all A-scans in 6a whose mean intensity value exceeded 15 above the mean intensity value of the corresponding A-scan in 6b. (49% of A-scans in this example qualify as reflection stripes)
Fig. 7
Fig. 7 (a-b) Sections of B-scans with kidney cortex and PCT lumen. (c-d). Sections of B-scans with high degrees of adipose and circular features which may be mistaken for PCT lumen.
Fig. 8
Fig. 8 (a) Section of B-scan following reflection and shadow stripe filling, and Gaussian blurring. (b) Blurred B-scan section with overlay of output from weak Canny edge detection (blue) and higher sensitivity Canny edge detection (red and yellow lines). The yellow line indicates the selected capsule-cortex interface from the higher sensitivity edge detection output.
Fig. 9
Fig. 9 (a) Section of a B-scan with visible PCT lumen. (b) Section of a B-scan with no visible PCT lumen and no anatomical landmarks. (c) Section of a B-scan with rapidly diminishing intensity values as the FOV moves past the OCT system’s penetration into the cortex. (d) Section of a B-scan with little reduction in intensity values as the FOV moves past the OCT system’s penetration into the cortex.
Fig. 10
Fig. 10 (a) Original section of a B-scan. (b) Map of lumen edge strength with brighter regions corresponding to stronger lumen edges. (c) Texture estimate generated by a vertically weighted standard deviation filter and contrast adjustment. (d) Greyscale output of the weighted combination of Fig. 10(a)-(c). The area between the green line and bottom yellow line represents the output of the thresholding of the image. The area between the top yellow line (derived from the capsule-cortex interface segmentation step (section 2.6.4) and the bottom yellow line represents the final segmented area of quantifiable cortex.
Fig. 11
Fig. 11 (a) Section from B-scan (same section as used in Fig. 10(a)) following adaptive histogram equalization. (b) Binary output of adaptive thresholding performed on original B-scan (Fig. 10(a)). (c) Binary output of global thresholding performed on the contrast-enhanced image (Fig. 11(a)). (d) ROI map generated after combining Fig. 11(b) and 11(c).
Fig. 12
Fig. 12 (a) Section of a B-scan with adjacent stripes of reflection (surrounding left arrow) and shadowing (right arrow) which produce false ROIs. (b) B-scan section from 12a with yellow representing the corresponding ROI map generated for this image. The vertical red stripes represent detected stripes of reflection while the vertical blue stripe represents detected stripes of shadowing. (c) Section of a B-scan with separation between capsule and cortex. The arrow indicates pockets at the point of separation which produce false ROIs. (d) B-scan section from 12c with yellow representing the corresponding ROI map. The arrow indicates a region (red) where separation of the capsule and cortex produces false ROIs.
Fig. 13
Fig. 13 (a) En face view of automatically segmented PCT lumen in a reconstructed 3D scan. Each tubule was extracted for comparison of B-scan cross-section features to features of cross-sections taken orthogonal to the orientation of the PCT at the same locations. The tubule segment highlighted in green is represented in 13b. (b) The red line represents the location of the B-scan while the blue plane represents the plane orthogonal to the orientation of that section of the PCT lumen segment (orientation from position 20 µm earlier in the segment to 20 µm further). The arrow indicates the point on the tubule where the cross-sections in 13c are captured. This process was repeated at every point along the length of the tubule. (c) Resulting B-scan and orthogonal cross-sections from 13b are represented in red and blue respectively.
Fig. 14
Fig. 14 Depiction of methodology for inter-lumen and inter-centroid measurements. The red circle represents a 110 µm radius around the center ROI of “adjacent” ROIs. Distances between lumen edges and centroids are represented in green and blue respectively.
Fig. 15
Fig. 15 (a) Original B-scan (same as used in Fig. 4) and (b) B-scan following segmentation automatically and by 2 manual raters. Segmentation of the capsule-cortex interface is represented by the top yellow, red and blue lines as segmented by the algorithm and 2 manual raters respectively. Segmentation of the quantifiable cortex boundary is represented by the bottom yellow, red and blue lines as segmented by the algorithm and 2 manual raters respectively. Automatic PCT lumen selections are represented in green if they overlap with either of the manual rater’s selections and yellow if they do not overlap with manual segmentation. Manual PCT lumen selections are represented in cyan if they overlap with 2nd rater’s selections and red or blue for each rater if there is no overlap.
Fig. 16
Fig. 16 Table representing reproducibility measurements for manual raters (left) reassigned 25 B-scans each from their original sets. MAE, Dice coefficients, and Cohen’s kappa coefficients are calculated for reproducibility in capsule-cortex interface, quantifiable cortex, and PCT lumen selections respectively. Kappa scores are also shown for only B-scans where density measurements were >5% (i.e. there was not a low population of tubule lumen). Comparison between manual raters’ initial segmentations of the 25 reassigned images and automatic segmentation performed on those same images is also shown (right).
Fig. 17
Fig. 17 Box and whisker plots of density measurements calculated with original lumen area (a) and with lumen area corrected by linear regression (b) for pre-implantation (left) and post-reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group is further divided into recovery groups which experienced either IGF (green) or DGF (red) following transplant. Mean density values for each recovery group are included in the attached table with p-values (from Student’s t-test), and values adjusted for false discovery rate (FDR) between transplant groups, representing significance of difference between recovery groups for each transplant group. The mean percent change (increase or decrease) to density following reperfusion is included at the bottom of each table for both recovery groups in each transplant group.
Fig. 18
Fig. 18 Box and whisker plots of diameter measurements calculated by minor axis length (a) and from lumen area corrected by linear regression (b) for pre-implantation (left) and post-reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group is further divided into recovery groups which experienced either IGF (green) or DGF (red) following transplant. Mean diameter values for each recovery group are included in the attached table with p-values (from Student’s t-test) and values adjusted for FDR between transplant groups, representing significance of difference between recovery groups for each transplant group. The mean percent change (increase or decrease) to diameter following reperfusion is included at the bottom of each table for both recovery groups in each transplant group.
Fig. 19
Fig. 19 Box and whisker plots of inter-centroid measurements for pre-implantation (left) and post-reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group is further divided into recovery groups which experienced either IGF (green) or DGF (red) following transplant. Mean inter-centroid distance values for each recovery group are included in the attached table with p-values (from Student’s t-test) and values adjusted for FDR between transplant groups, representing significance of difference between recovery groups for each transplant group. The mean percent change (increase or decrease) to inter-centroid distance following reperfusion is included at the bottom of each table for both recovery groups in each transplant group.
Fig. 20
Fig. 20 Box and whisker plots of inter-lumen measurements for pre-implantation (left) and post-reperfusion (right) scans for the LDKT group (green), and the DDKT subgroups: SCD kidneys stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group is further divided into recovery groups which experienced either IGF (green) or DGF (red) following transplant. Mean inter-lumen distance values for each recovery group are included in the attached table with p-values (from Student’s t-test) and values adjusted for FDR between transplant groups, representing significance of difference between recovery groups for each transplant group. The percent change (increase or decrease) to inter-lumen distance following reperfusion is included at the bottom of each table for both recovery groups in each transplant group.
Fig. 21
Fig. 21 Table displaying measurements selected by lasso penalized regression modeling as the most relevant to post-transplant function. Selected measurements from only pre-implantation measurements (top), and from the combined pre-implantation and post-reperfusion measurements (bottom) were selected.