Abstract

The main objective of the present study is to evaluate the use of Brillouin microspectroscopy for differentiation of melanoma and normal tissues based on elasticity measurements. Previous studies of malignant melanoma show that the lesion is stiffer than the surrounding healthy tissue. We hypothesize that elasticity-specific Brillouin spectroscopy can be used to distinguish between healthy and cancerous regions of an excised melanoma from a Sinclair miniature swine. Brillouin measurements of non-regressing and regressing melanomas and the surrounding healthy tissues were performed. Based on the Brillouin measurements, the melanomas and healthy tissues can be successfully differentiated. The stiffness of both tumors is found to be significantly greater than the healthy tissues. Notably, we found that the elasticity of regressing melanoma is closer to that of the normal tissue. The results indicate that Brillouin spectroscopy can be utilized as a tool for elasticity-based differentiation between malignant melanoma and surrounding healthy tissue, with potential use for melanoma boundary identification, monitoring tumor progression, or response to treatment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Seeing cells in a new light: a renaissance of Brillouin spectroscopy

Zhaokai Meng, Andrew J. Traverso, Charles W. Ballmann, Maria A. Troyanova-Wood, and Vladislav V. Yakovlev
Adv. Opt. Photon. 8(2) 300-327 (2016)

Identification of melanoma cells: a method based in mean variance of signatures via spectral densities

Esperanza Guerra-Rosas, Josué Álvarez-Borrego, and Aracely Angulo-Molina
Biomed. Opt. Express 8(4) 2185-2194 (2017)

Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector

Yating Wang, Dong Xu, Sihua Yang, and Da Xing
Biomed. Opt. Express 7(2) 279-286 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Miller and M. C. J. Mihm, “Melanoma,” N. Engl. J. Med. 355(1), 51–65 (2006).
    [Crossref] [PubMed]
  2. C. Garbe and U. Leiter, “Melanoma epidemiology and trends,” Clin. Dermatol. 27(1), 3–9 (2009).
    [Crossref] [PubMed]
  3. American Cancer Society, “American Cancer Society: cancer facts and figures 2015,” (2015).
  4. C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
    [Crossref] [PubMed]
  5. G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2(7), 443–449 (2001).
    [Crossref] [PubMed]
  6. H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
    [Crossref] [PubMed]
  7. K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
    [Crossref] [PubMed]
  8. C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
    [Crossref] [PubMed]
  9. C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
    [Crossref] [PubMed]
  10. C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
    [PubMed]
  11. T. Hinz, J. Wenzel, and M.-H. Schmid-Wendtner, “Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma?” J. Am. Acad. Dermatol. 65(2), 424–426 (2011).
    [Crossref] [PubMed]
  12. M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
    [Crossref] [PubMed]
  13. S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
    [Crossref] [PubMed]
  14. I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
    [Crossref] [PubMed]
  15. A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
    [Crossref] [PubMed]
  16. H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
    [Crossref] [PubMed]
  17. S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
    [Crossref] [PubMed]
  18. C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
    [Crossref] [PubMed]
  19. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
    [Crossref] [PubMed]
  20. L. Provencher, J. C. Hogue, C. Desbiens, B. Poirier, E. Poirier, D. Boudreau, M. Joyal, C. Diorio, N. Duchesne, and J. Chiquette, “Is clinical breast examination important for breast cancer detection ?” Current Oncology 23, 332–339 (2016).
    [Crossref]
  21. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
    [Crossref] [PubMed]
  22. A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
    [Crossref] [PubMed]
  23. D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
    [Crossref] [PubMed]
  24. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  25. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
    [Crossref] [PubMed]
  26. P. Wellman and R. Howe, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Harvard BioRobotics Lab. Tech. Rep. 1–15 (1999).
  27. S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [Crossref] [PubMed]
  28. S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
    [Crossref] [PubMed]
  29. V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
    [Crossref] [PubMed]
  30. G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
    [PubMed]
  31. M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
    [Crossref] [PubMed]
  32. M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
    [Crossref] [PubMed]
  33. S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
    [Crossref]
  34. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  35. F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
    [Crossref] [PubMed]
  36. R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
    [Crossref] [PubMed]
  37. S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
    [Crossref] [PubMed]
  38. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
    [Crossref] [PubMed]
  39. G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
    [Crossref] [PubMed]
  40. J. N. Webb, J. P. Su, and G. Scarcelli, “Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy,” J. Cataract Refract. Surg. 43(11), 1458–1463 (2017).
    [Crossref] [PubMed]
  41. L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
    [Crossref] [PubMed]
  42. M. Troyanova-Wood, Z. Meng, and V. V. Yakovlev, “Elasticity-based identification of tumor margins using Brillouin spectroscopy,” Prog. Biomed. Opt. Imaging - Proc. SPIE 9719, 97190P (2016).
  43. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
    [Crossref]
  44. Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
    [Crossref] [PubMed]
  45. Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 8(04), 1550021 (2015).
    [Crossref]
  46. Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26(3), 2400–2409 (2018).
    [Crossref] [PubMed]
  47. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
    [Crossref] [PubMed]
  48. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref] [PubMed]
  49. J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).
  50. Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst (Lond.) 140(21), 7160–7164 (2015).
    [Crossref] [PubMed]
  51. C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
    [Crossref]

2018 (3)

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26(3), 2400–2409 (2018).
[Crossref] [PubMed]

2017 (5)

C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

J. N. Webb, J. P. Su, and G. Scarcelli, “Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy,” J. Cataract Refract. Surg. 43(11), 1458–1463 (2017).
[Crossref] [PubMed]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

2016 (6)

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

M. Troyanova-Wood, Z. Meng, and V. V. Yakovlev, “Elasticity-based identification of tumor margins using Brillouin spectroscopy,” Prog. Biomed. Opt. Imaging - Proc. SPIE 9719, 97190P (2016).

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

2015 (5)

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst (Lond.) 140(21), 7160–7164 (2015).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 8(04), 1550021 (2015).
[Crossref]

2014 (2)

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

2013 (1)

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

T. Hinz, J. Wenzel, and M.-H. Schmid-Wendtner, “Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma?” J. Am. Acad. Dermatol. 65(2), 424–426 (2011).
[Crossref] [PubMed]

2009 (2)

C. Garbe and U. Leiter, “Melanoma epidemiology and trends,” Clin. Dermatol. 27(1), 3–9 (2009).
[Crossref] [PubMed]

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

2008 (1)

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

2007 (2)

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
[Crossref] [PubMed]

2006 (3)

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

A. J. Miller and M. C. J. Mihm, “Melanoma,” N. Engl. J. Med. 355(1), 51–65 (2006).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

2005 (2)

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

2004 (1)

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

2002 (1)

H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
[Crossref] [PubMed]

2001 (2)

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2(7), 443–449 (2001).
[Crossref] [PubMed]

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

2000 (1)

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

1998 (2)

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

1996 (1)

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

1992 (1)

K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
[Crossref] [PubMed]

1991 (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

1990 (1)

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

1974 (1)

L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
[Crossref] [PubMed]

Abuhattum, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Altmeyer, P.

K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Antonacci, G.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Argenziano, G.

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2(7), 443–449 (2001).
[Crossref] [PubMed]

Aurora, D.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Ballmann, C. W.

C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Bamber, J. C.

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

Barr, H.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Barr, R. G.

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Bart, R. S.

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

Bartoli, C.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Beier, H. T.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Berchuck, A.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Billheimer, D.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

Binder, M.

H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
[Crossref] [PubMed]

Bixler, J. N.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Blobe, G. C.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Bogdan, A.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Böhm, M.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Bojic, S.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Bolboaca, S. D.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Bono, A.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Botar Jid, C.

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Botar-Jid, C. M.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

Boylon, J. L.

L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
[Crossref] [PubMed]

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Burda, K.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Caponi, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Carrara, M.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Castaneda, B.

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Chow, C.

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Cojoc, G.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Coker, Z.

Colombo, A.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Connon, C. J.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Cosgarea, R.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Cross, S. E.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Czarske, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

David, A.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Denton, M. L.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Derjabo, A.

Destounis, S. V.

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Diebele, I.

Dudea, S. M.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

el Gammal, S.

K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
[Crossref] [PubMed]

Elbaum, M.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Ellis, D. L.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Emiliani, C.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Figueiredo, F. C.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Figueiredo, G. S.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Fioretto, D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Garbe, C.

C. Garbe and U. Leiter, “Melanoma epidemiology and trends,” Clin. Dermatol. 27(1), 3–9 (2009).
[Crossref] [PubMed]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Gashev, A. A.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Gimzewski, J. K.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Ginat, D. T.

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Gkogkolou, P.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Gniadecka, M.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

Gobbell, C.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Gouveia, R. M.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Greenebaum, M.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Grin, C. M.

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

Guck, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Gutkowicz-Krusin, D.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Hansen, L. K.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

Harland, C. C.

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

Heinzelmann, H.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Hendriks-Balk, M. C.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Hinz, T.

T. Hinz, J. Wenzel, and M.-H. Schmid-Wendtner, “Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma?” J. Am. Acad. Dermatol. 65(2), 424–426 (2011).
[Crossref] [PubMed]

Hoffmann, K.

K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
[Crossref] [PubMed]

Hokr, B. H.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Hook, R. R.

L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
[Crossref] [PubMed]

Itai, Y.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Itoh, A.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Jackson, P.

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Jin, Y.-S.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Jung, J.

K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
[Crossref] [PubMed]

Kale, S. G.

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Kamada, T.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Kamino, H.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Kamma, H.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Kandatsu, S.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Kapostinsh, J.

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Keem, S.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Kim, K.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Kittler, H.

H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
[Crossref] [PubMed]

Koga, M.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Kopf, A. W.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Kuzmina, I.

Lako, M.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Langley, R. G.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Larsen, J.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

Leiter, U.

C. Garbe and U. Leiter, “Melanoma epidemiology and trends,” Clin. Dermatol. 27(1), 3–9 (2009).
[Crossref] [PubMed]

Lenghel, L. M.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

Lenghel, M.

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Lepert, G.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Levenstein, M. J.

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

Li, X.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Lieber, C. A.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

Lihachev, A.

Liley, M.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Lualdi, M.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Lui, H.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

Madami, M.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

Majumder, S. K.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

Manning, P. J.

L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
[Crossref] [PubMed]

Marchesini, R.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Marincola, F.

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Mariotti, A.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Matsumura, T.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Matsuoka, Y.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

McLean, D.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

Meister, A.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Meng, Z.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

M. Troyanova-Wood, Z. Meng, and V. V. Yakovlev, “Elasticity-based identification of tumor margins using Brillouin spectroscopy,” Prog. Biomed. Opt. Imaging - Proc. SPIE 9719, 97190P (2016).

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 8(04), 1550021 (2015).
[Crossref]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst (Lond.) 140(21), 7160–7164 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Mihm, M. C.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Mihm, M. C. J.

A. J. Miller and M. C. J. Mihm, “Melanoma,” N. Engl. J. Med. 355(1), 51–65 (2006).
[Crossref] [PubMed]

Miller, A. J.

A. J. Miller and M. C. J. Mihm, “Melanoma,” N. Engl. J. Med. 355(1), 51–65 (2006).
[Crossref] [PubMed]

Millikan, L. E.

L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
[Crossref] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mizoe, J.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Möckel, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Möllmert, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Mortimer, P. S.

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

Mudhar, H. S.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Müller, P.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Mythreye, K.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Nallala, J.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Noojin, G. D.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

O’Brien, E. T.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Olchawa, M.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Oliviero, M.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Palombo, F.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Paterson, C.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Peck, G. L.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Pehamberger, H.

H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
[Crossref] [PubMed]

Petrov, G. I.

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst (Lond.) 140(21), 7160–7164 (2015).
[Crossref] [PubMed]

Philipsen, P. A.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

Pilat, A.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Premkumar, A.

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Rabinovitz, H. S.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Rao, J.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Rimoldi, D.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Rockwell, B. A.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Rogojan, L.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rooney, P.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Rubens, D. J.

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Sagini, K.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sarna, M.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Sarna, T.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Scarcelli, G.

J. N. Webb, J. P. Su, and G. Scarcelli, “Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy,” J. Cataract Refract. Surg. 43(11), 1458–1463 (2017).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schlüßler, R.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Schmid-Wendtner, M.-H.

T. Hinz, J. Wenzel, and M.-H. Schmid-Wendtner, “Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma?” J. Am. Acad. Dermatol. 65(2), 424–426 (2011).
[Crossref] [PubMed]

Schwartzentruber, D.

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Scully, M. O.

C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Senila, S.

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Senila, S. C.

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

Serra, M. D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Shiina, T.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Sigurdsson, S.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

Smajda, R.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Sober, A. J.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Soyer, H. P.

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2(7), 443–449 (2001).
[Crossref] [PubMed]

Spigulis, J.

Steelman, Z. A.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Stone, N.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Strang, J. G.

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Su, J. P.

J. N. Webb, J. P. Su, and G. Scarcelli, “Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy,” J. Cataract Refract. Surg. 43(11), 1458–1463 (2017).
[Crossref] [PubMed]

Superfine, R.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Suresh, S.

S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
[Crossref] [PubMed]

Swaminathan, V.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Takahashi, H.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Tamagnini, F.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Taubenberger, J.

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Thomas, R. J.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Thompson, J. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Tohno, E.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Tomatis, S.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Tragni, G.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Traverso, A. J.

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26(3), 2400–2409 (2018).
[Crossref] [PubMed]

C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Troyanova-Wood, M.

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26(3), 2400–2409 (2018).
[Crossref] [PubMed]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

M. Troyanova-Wood, Z. Meng, and V. V. Yakovlev, “Elasticity-based identification of tumor margins using Brillouin spectroscopy,” Prog. Biomed. Opt. Imaging - Proc. SPIE 9719, 97190P (2016).

Troyanova-Wood, M. A.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Tsujii, H.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Ueno, E.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Utegulov, Z. N.

Valeine, L.

Vasilescu, D.

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

Venzon, D.

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Wang, S.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Webb, J. N.

J. N. Webb, J. P. Su, and G. Scarcelli, “Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy,” J. Cataract Refract. Surg. 43(11), 1458–1463 (2017).
[Crossref] [PubMed]

Weder, G.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Welkovich, B.

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

Wenzel, J.

T. Hinz, J. Wenzel, and M.-H. Schmid-Wendtner, “Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma?” J. Am. Acad. Dermatol. 65(2), 424–426 (2011).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

Wilshaw, S. P.

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Wolff, K.

H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Wulf, H. C.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

Yakovlev, V. V.

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26(3), 2400–2409 (2018).
[Crossref] [PubMed]

C. W. Ballmann, Z. Meng, A. J. Traverso, V. V. Yakovlev, and M. O. Scully, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

M. Troyanova-Wood, Z. Meng, and V. V. Yakovlev, “Elasticity-based identification of tumor margins using Brillouin spectroscopy,” Prog. Biomed. Opt. Imaging - Proc. SPIE 9719, 97190P (2016).

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 8(04), 1550021 (2015).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst (Lond.) 140(21), 7160–7164 (2015).
[Crossref] [PubMed]

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Yakupov, T.

Yamakawa, M.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Yoshikawa, K.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Yoshioka, H.

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

Zadlo, A.

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Zeng, H.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zhao, J.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

Zimmermann, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Acta Biomater. (1)

G. S. Figueiredo, S. Bojic, P. Rooney, S. P. Wilshaw, C. J. Connon, R. M. Gouveia, C. Paterson, G. Lepert, H. S. Mudhar, F. C. Figueiredo, and M. Lako, “Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells,” Acta Biomater. 61, 124–133 (2017).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

AJR Am. J. Roentgenol. (1)

C. M. Botar-Jid, R. Cosgarea, S. D. Bolboacă, S. C. Şenilă, L. M. Lenghel, L. Rogojan, and S. M. Dudea, “Assessment of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography,” AJR Am. J. Roentgenol. 206(4), 699–704 (2016).
[Crossref] [PubMed]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst (Lond.) 140(21), 7160–7164 (2015).
[Crossref] [PubMed]

Arch. Dermatol. (1)

C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Arch. Dermatol. 126(6), 763–766 (1990).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (2)

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Br. J. Dermatol. (1)

C. C. Harland, S. G. Kale, P. Jackson, P. S. Mortimer, and J. C. Bamber, “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound,” Br. J. Dermatol. 143(2), 281–289 (2000).
[Crossref] [PubMed]

Cancer Res. (2)

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

Clin. Dermatol. (1)

C. Garbe and U. Leiter, “Melanoma epidemiology and trends,” Clin. Dermatol. 27(1), 3–9 (2009).
[Crossref] [PubMed]

Dermatology (Basel) (1)

K. Hoffmann, J. Jung, S. el Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology (Basel) 185(1), 49–55 (1992).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004).
[Crossref] [PubMed]

J. Am. Acad. Dermatol. (2)

T. Hinz, J. Wenzel, and M.-H. Schmid-Wendtner, “Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma?” J. Am. Acad. Dermatol. 65(2), 424–426 (2011).
[Crossref] [PubMed]

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, D. Aurora, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near IR radiation,” J. Biomed. Opt. 19, 070501 (2015).

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13(2), 024013 (2008).
[Crossref] [PubMed]

J. Biophotonics (2)

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

J. N. Webb, J. P. Su, and G. Scarcelli, “Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy,” J. Cataract Refract. Surg. 43(11), 1458–1463 (2017).
[Crossref] [PubMed]

J. Comput. Assist. Tomogr. (1)

H. Yoshioka, T. Kamada, S. Kandatsu, M. Koga, K. Yoshikawa, Y. Matsuoka, J. Mizoe, Y. Itai, and H. Tsujii, “MRI of Mucosal Malignant Melanoma of the Head and Neck,” J. Comput. Assist. Tomogr. 22(3), 492–497 (1998).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (2)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 8(04), 1550021 (2015).
[Crossref]

J. Invest. Dermatol. (1)

L. E. Millikan, J. L. Boylon, R. R. Hook, and P. J. Manning, “Melanoma in Sinclair swine: a new animal model,” J. Invest. Dermatol. 62(1), 20–30 (1974).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

A. Premkumar, F. Marincola, J. Taubenberger, C. Chow, D. Venzon, and D. Schwartzentruber, “Metastatic melanoma: Correlation of MRI characteristics and histopathology,” J. Magn. Reson. Imaging 6(1), 190–194 (1996).
[Crossref] [PubMed]

Lancet Oncol. (2)

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2(7), 443–449 (2001).
[Crossref] [PubMed]

H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3(3), 159–165 (2002).
[Crossref] [PubMed]

Light Sci. Appl. (1)

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Med. Ultrason. (1)

C. Botar Jid, S. D. Bolboacă, R. Cosgarea, S. Şenilă, L. Rogojan, M. Lenghel, D. Vasilescu, and S. M. Dudea, “Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: Preliminary results,” Med. Ultrason. 17(4), 509–514 (2015).
[PubMed]

N. Engl. J. Med. (1)

A. J. Miller and M. C. J. Mihm, “Melanoma,” N. Engl. J. Med. 355(1), 51–65 (2006).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine (Lond.) 10(1), 141–148 (2014).
[PubMed]

Nat. Nanotechnol. (2)

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

Phys. Med. Biol. (1)

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Phys. Med. Biol. 50(8), 1675–1687 (2005).
[Crossref] [PubMed]

Pigment Cell Melanoma Res. (1)

M. Sarna, A. Zadlo, A. Pilat, M. Olchawa, P. Gkogkolou, K. Burda, M. Böhm, and T. Sarna, “Nanomechanical analysis of pigmented human melanoma cells,” Pigment Cell Melanoma Res. 26(5), 727–730 (2013).
[Crossref] [PubMed]

Prog. Biomed. Opt. Imaging - Proc. SPIE (1)

M. Troyanova-Wood, Z. Meng, and V. V. Yakovlev, “Elasticity-based identification of tumor margins using Brillouin spectroscopy,” Prog. Biomed. Opt. Imaging - Proc. SPIE 9719, 97190P (2016).

Radiographics (1)

D. T. Ginat, S. V. Destounis, R. G. Barr, B. Castaneda, J. G. Strang, and D. J. Rubens, “US elastography of breast and prostate lesions,” Radiographics 29(7), 2007–2016 (2009).
[Crossref] [PubMed]

Radiology (1)

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Ultrason. Imaging (2)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
[Crossref] [PubMed]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Other (3)

L. Provencher, J. C. Hogue, C. Desbiens, B. Poirier, E. Poirier, D. Boudreau, M. Joyal, C. Diorio, N. Duchesne, and J. Chiquette, “Is clinical breast examination important for breast cancer detection ?” Current Oncology 23, 332–339 (2016).
[Crossref]

P. Wellman and R. Howe, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Harvard BioRobotics Lab. Tech. Rep. 1–15 (1999).

American Cancer Society, “American Cancer Society: cancer facts and figures 2015,” (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Photos (top, circles mark the lesions, arrow points to the area of depigmentation) and corresponding histology slides of lesion cross-section (bottom, H&E stain) of: (a) normal non-regressing melanoma and (b) regressing melanoma.
Fig. 2
Fig. 2 Schematic diagram of instrumental setup for Brillouin spectroscopy. The heated iodine cell served as an ultra-narrow notch filter. Abbreviations: PBS – polarizing beamsplitter, obj. – 20x objective lens, λ/2 – half-wave plate and λ/4 – quarter-wave plate.
Fig. 3
Fig. 3 Example Brillouin spectra, anti-Stokes Brillouin peaks of healthy tissue, normal non-regressing and regressing melanoma: (a) typical raw Brillouin spectra and (b) the expanded view showing the Lorentzian function fit of the data.
Fig. 4
Fig. 4 Brillouin shifts of the healthy tissue, normal non-regressing and regressing melanomas, displayed as mean ± standard deviation. The difference between the Brillouin shifts is statistically significant (*** p≤0.001, ** p≤0.01).