Abstract

Brillouin spectroscopy is an emerging tool in biomedical imaging and sensing. It is capable of assessing the high-frequency viscoelastic longitudinal modulus with microscopic spatial resolution. Nonlinear Brillouin spectroscopy based on impulsive stimulated Brillouin scattering offers a number of significant advantages over conventional spontaneous and stimulated Brillouin scattering. In this report, we evaluate the accuracy of Brillouin shift measurements in spontaneous and nonlinear Brillouin microscopy by calculating the Allan variance for both CW excited spontaneous Brillouin measurements and nonlinear Brillouin scattering measurements made with both nanosecond and picosecond pulse excitation. We find that impulsive stimulated Brillouin spectroscopy is superior to spontaneous Brillouin spectroscopy in terms of the accuracy of such measurements and demonstrate its application for assessing tiny changes in Brillouin frequency shifts associated with low concentrations of biologically relevant solutions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impulsive Brillouin microscopy

Charles W. Ballmann, Zhaokai Meng, Andrew J. Traverso, Marlan O. Scully, and Vladislav V. Yakovlev
Optica 4(1) 124-128 (2017)

Image analysis applied to Brillouin images of tissue-mimicking collagen gelatins

Noemi Correa, Simon Harding, Michelle Bailey, Sophie Brasselet, and Francesca Palombo
Biomed. Opt. Express 10(3) 1329-1338 (2019)

Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Jonietz, “Mechanics: The forces of cancer,” Nature 491, S56–S57 (2012).
    [Crossref]
  2. S. Suresh and G Bao, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
    [Crossref]
  3. T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
    [Crossref] [PubMed]
  4. J. Blacher and M. E. Safar, “Large-artery stiffness, hypertension and cardiovascular risk in older patients,” Nat. Clin. Pract. Cardiovasc. Med. 2, 450–455 (2005).
    [Crossref] [PubMed]
  5. A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
    [Crossref] [PubMed]
  6. P. G. Gillespie and R. G. Walker, “Molecular basis of mechanosensory transduction,” Nature 413, 194 (2001).
    [Crossref] [PubMed]
  7. W. H. Roos, R. Bruinsma, and G. J. L. Wuite, “Physical virology,” Nat. Phys. 6, 733 (2010).
    [Crossref]
  8. R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature 428, 487–492 (2004).
    [Crossref] [PubMed]
  9. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
    [Crossref] [PubMed]
  10. I. L. Fabelinskii, Molecular Scattering of Light (Plenum Press, 1968).
    [Crossref]
  11. J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin Scattering in Systems of Biological Significance [and Discussion],” Philos. T. R. Soc. S-A 293, 341–348 (1979).
    [Crossref]
  12. Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
    [Crossref]
  13. K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
    [Crossref]
  14. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
    [Crossref] [PubMed]
  15. Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
    [Crossref]
  16. G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
    [Crossref] [PubMed]
  17. G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
    [Crossref] [PubMed]
  18. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
    [Crossref] [PubMed]
  19. S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
    [Crossref]
  20. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
    [Crossref]
  21. Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
    [Crossref] [PubMed]
  22. M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
    [Crossref] [PubMed]
  23. Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
    [Crossref] [PubMed]
  24. D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
    [Crossref] [PubMed]
  25. C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).
  26. I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41, 926–929 (2016).
    [Crossref]
  27. H. Eichler and H. Stahl, “Time and frequency behavior of sound waves thermally induced by modulated laser pulses,” J. Appl. Phys. 44, 3429–3435 (1973).
    [Crossref]
  28. A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23, 1319–1321 (1998).
    [Crossref]
  29. Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140, 7160–7164 (2015).
    [Crossref] [PubMed]
  30. C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
    [Crossref]
  31. R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55, 3237–3254 (2008).
    [Crossref]
  32. Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70, 1356–1363 (2016).
    [Crossref] [PubMed]
  33. Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
    [Crossref]
  34. L. Brillouin, “Diffusion de la lumiere et des rayonnes X par un corps transparent homogene; influence del’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).
  35. H. Boersch and H. Eichler, “Beugung an einem mit stehenden Lichtwellen gepumpten Rubin,” Zeitschrift für Angewandte Physik 22, 378 (1967).
  36. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings., Springer series in optical sciences: v. 50 (Springer-Verlag, 1986).
    [Crossref]
  37. J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
    [Crossref]
  38. Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22, 144–148 (2014).
    [Crossref]
  39. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
    [Crossref] [PubMed]
  40. D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE 54, 221–230 (1966).
    [Crossref]
  41. V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957–964 (2003).
    [Crossref]
  42. J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
    [Crossref]
  43. J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).
  44. B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, vol. 42 (Springer-Verlag, 1985).
    [Crossref]
  45. Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
    [Crossref]
  46. J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

2018 (4)

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

2017 (4)

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

2016 (6)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41, 926–929 (2016).
[Crossref]

Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70, 1356–1363 (2016).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

2015 (6)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
[Crossref]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140, 7160–7164 (2015).
[Crossref] [PubMed]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

2014 (2)

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22, 144–148 (2014).
[Crossref]

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

2012 (1)

E. Jonietz, “Mechanics: The forces of cancer,” Nature 491, S56–S57 (2012).
[Crossref]

2011 (1)

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

2010 (1)

W. H. Roos, R. Bruinsma, and G. J. L. Wuite, “Physical virology,” Nat. Phys. 6, 733 (2010).
[Crossref]

2009 (1)

A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
[Crossref] [PubMed]

2008 (1)

R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55, 3237–3254 (2008).
[Crossref]

2005 (2)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

J. Blacher and M. E. Safar, “Large-artery stiffness, hypertension and cardiovascular risk in older patients,” Nat. Clin. Pract. Cardiovasc. Med. 2, 450–455 (2005).
[Crossref] [PubMed]

2004 (1)

R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature 428, 487–492 (2004).
[Crossref] [PubMed]

2003 (3)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[Crossref] [PubMed]

S. Suresh and G Bao, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]

V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957–964 (2003).
[Crossref]

2001 (1)

P. G. Gillespie and R. G. Walker, “Molecular basis of mechanosensory transduction,” Nature 413, 194 (2001).
[Crossref] [PubMed]

1998 (1)

1997 (1)

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

1979 (1)

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin Scattering in Systems of Biological Significance [and Discussion],” Philos. T. R. Soc. S-A 293, 341–348 (1979).
[Crossref]

1973 (1)

H. Eichler and H. Stahl, “Time and frequency behavior of sound waves thermally induced by modulated laser pulses,” J. Appl. Phys. 44, 3429–3435 (1973).
[Crossref]

1967 (1)

H. Boersch and H. Eichler, “Beugung an einem mit stehenden Lichtwellen gepumpten Rubin,” Zeitschrift für Angewandte Physik 22, 378 (1967).

1966 (1)

D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

1922 (1)

L. Brillouin, “Diffusion de la lumiere et des rayonnes X par un corps transparent homogene; influence del’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Akilbekova, D.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Allan, D. W.

D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

Antonacci, G.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Arora, R.

R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55, 3237–3254 (2008).
[Crossref]

Ballmann, C. W.

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

Banet, M. J.

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Bao, G

S. Suresh and G Bao, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]

Beier, H. T.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Bilenca, A.

Bixler, J. N.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

Blacher, J.

J. Blacher and M. E. Safar, “Large-artery stiffness, hypertension and cardiovascular risk in older patients,” Nat. Clin. Pract. Cardiovasc. Med. 2, 450–455 (2005).
[Crossref] [PubMed]

Boersch, H.

H. Boersch and H. Eichler, “Beugung an einem mit stehenden Lichtwellen gepumpten Rubin,” Zeitschrift für Angewandte Physik 22, 378 (1967).

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, “Diffusion de la lumiere et des rayonnes X par un corps transparent homogene; influence del’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Bruinsma, R.

W. H. Roos, R. Bruinsma, and G. J. L. Wuite, “Physical virology,” Nat. Phys. 6, 733 (2010).
[Crossref]

Bustamante Lopez, S. C.

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
[Crossref]

Caponi, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Chitrakar, C.

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

Coker, Z.

Connon, C. J.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Cusak, S.

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin Scattering in Systems of Biological Significance [and Discussion],” Philos. T. R. Soc. S-A 293, 341–348 (1979).
[Crossref]

de Silva, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Denton, M. L.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

Eichler, H.

H. Eichler and H. Stahl, “Time and frequency behavior of sound waves thermally induced by modulated laser pulses,” J. Appl. Phys. 44, 3429–3435 (1973).
[Crossref]

H. Boersch and H. Eichler, “Beugung an einem mit stehenden Lichtwellen gepumpten Rubin,” Zeitschrift für Angewandte Physik 22, 378 (1967).

Eichler, H. J.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings., Springer series in optical sciences: v. 50 (Springer-Verlag, 1986).
[Crossref]

Elsayad, K.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Emiliani, C.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Fabelinskii, I. L.

I. L. Fabelinskii, Molecular Scattering of Light (Plenum Press, 1968).
[Crossref]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[Crossref] [PubMed]

Fioretto, D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Florescu, P.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Fuchs, M.

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Gaharwar, A. K.

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Garbrecht, J.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Gashev, A. A.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Gillespie, P. G.

P. G. Gillespie and R. G. Walker, “Molecular basis of mechanosensory transduction,” Nature 413, 194 (2001).
[Crossref] [PubMed]

Gobbell, C.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Gonzalez-Gaitan, M.

A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
[Crossref] [PubMed]

Gorfinkiel, N.

A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
[Crossref] [PubMed]

Gotzmann, J.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Gouveia, R. M.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Günter, P.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings., Springer series in optical sciences: v. 50 (Springer-Verlag, 1986).
[Crossref]

Hanselman, J. B.

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Heisenberg, C.-P.

A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
[Crossref] [PubMed]

Herbert, S.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Hokr, B. H.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

Hornegger, H.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[Crossref] [PubMed]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Jaiswal, M. K.

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

Jonietz, E.

E. Jonietz, “Mechanics: The forces of cancer,” Nature 491, S56–S57 (2012).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Kaufmann, T.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Kondiboyina, A.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Koski, K. J.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

Krams, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Kurpios, N. A.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Langer, R.

R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature 428, 487–492 (2004).
[Crossref] [PubMed]

Lepert, G.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Liang, H.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Logan, R.

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Mahadevan, L.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Maitland, D. J.

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Maznev, A. A.

Mehta, V. V.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Meissner, K. E.

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
[Crossref]

Meng, Z.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70, 1356–1363 (2016).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140, 7160–7164 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
[Crossref]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22, 144–148 (2014).
[Crossref]

Nelson, K. A.

A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23, 1319–1321 (1998).
[Crossref]

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Noojin, G. D.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

Nurakhmetov, A.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Oates, A. C.

A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
[Crossref] [PubMed]

Ogay, V.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Oian, C. A.

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Pedrigi, R. M.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Petrov, G. I.

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140, 7160–7164 (2015).
[Crossref] [PubMed]

R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55, 3237–3254 (2008).
[Crossref]

Pilipetsky, N. F.

B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, vol. 42 (Springer-Verlag, 1985).
[Crossref]

Pohl, D. W.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings., Springer series in optical sciences: v. 50 (Springer-Verlag, 1986).
[Crossref]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Randall, J.

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin Scattering in Systems of Biological Significance [and Discussion],” Philos. T. R. Soc. S-A 293, 341–348 (1979).
[Crossref]

Remer, I.

Rockwell, B. A.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

Rogers, J. A.

A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23, 1319–1321 (1998).
[Crossref]

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Roos, W. H.

W. H. Roos, R. Bruinsma, and G. J. L. Wuite, “Physical virology,” Nat. Phys. 6, 733 (2010).
[Crossref]

Safar, M. E.

J. Blacher and M. E. Safar, “Large-artery stiffness, hypertension and cardiovascular risk in older patients,” Nat. Clin. Pract. Cardiovasc. Med. 2, 450–455 (2005).
[Crossref] [PubMed]

Sagini, K.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Sarsenova, M.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Savin, T.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Scarcelli, G.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Scully, M. O.

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

Serra, M. D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Shingledecker, A. D.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

Shkunov, V. V.

B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, vol. 42 (Springer-Verlag, 1985).
[Crossref]

Shyer, A. E.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Slade, D.

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Stahl, H.

H. Eichler and H. Stahl, “Time and frequency behavior of sound waves thermally induced by modulated laser pulses,” J. Appl. Phys. 44, 3429–3435 (1973).
[Crossref]

Steelman, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
[Crossref]

Steelman, Z. A.

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

Suresh, S.

S. Suresh and G Bao, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]

Szafron, J. M.

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

Tabin, C. J.

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

Tazhin, K.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Thakur, T.

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

Thomas, R. J.

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

Thompson, J. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

Tirrell, D. A.

R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature 428, 487–492 (2004).
[Crossref] [PubMed]

Torok, P.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

Traverso, A. J.

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
[Crossref]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22, 144–148 (2014).
[Crossref]

Troyanova-Wood, M.

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

Umbayev, B.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Utegulov, Z. N.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

Vaughan, J. M.

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin Scattering in Systems of Biological Significance [and Discussion],” Philos. T. R. Soc. S-A 293, 341–348 (1979).
[Crossref]

Walker, R. G.

P. G. Gillespie and R. G. Walker, “Molecular basis of mechanosensory transduction,” Nature 413, 194 (2001).
[Crossref] [PubMed]

Weems, A. C.

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Wuite, G. J. L.

W. H. Roos, R. Bruinsma, and G. J. L. Wuite, “Physical virology,” Nat. Phys. 6, 733 (2010).
[Crossref]

Yakovlev, V. V.

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70, 1356–1363 (2016).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
[Crossref]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140, 7160–7164 (2015).
[Crossref] [PubMed]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22, 144–148 (2014).
[Crossref]

R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55, 3237–3254 (2008).
[Crossref]

V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957–964 (2003).
[Crossref]

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

Yakupov, T.

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

Yarger, J. L.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Zel’dovich, B. Y.

B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, vol. 42 (Springer-Verlag, 1985).
[Crossref]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

ACS Nano (1)

Z. Meng, T. Thakur, C. Chitrakar, M. K. Jaiswal, A. K. Gaharwar, and V. V. Yakovlev, “Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks,” ACS Nano 11, 7690–7696 (2017).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8, 300–327 (2016).
[Crossref]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87, 7519–7523 (2015).
[Crossref] [PubMed]

Analyst (1)

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140, 7160–7164 (2015).
[Crossref] [PubMed]

Ann. Phys. (Paris) (1)

L. Brillouin, “Diffusion de la lumiere et des rayonnes X par un corps transparent homogene; influence del’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87, 061903 (2005).
[Crossref]

Z. A. Steelman, A. C. Weems, A. J. Traverso, J. M. Szafron, D. J. Maitland, and V. V. Yakovlev, “Revealing the glass transition in shape memory polymers using Brillouin spectroscopy,” Appl. Phys. Lett. 111, 241904 (2017).
[Crossref] [PubMed]

J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A. Nelson, “Optical system for rapid materials characterization with the transient grating technique: Application to nondestructive evaluation of thin films used in microelectronics,” Appl. Phys. Lett. 71, 225 (1997).
[Crossref]

Appl. Spectrosc. (1)

Faraday Discuss. (1)

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

J. Appl. Phys. (1)

H. Eichler and H. Stahl, “Time and frequency behavior of sound waves thermally induced by modulated laser pulses,” J. Appl. Phys. 44, 3429–3435 (1973).
[Crossref]

J. Biomed. Opt. (2)

D. Akilbekova, V. Ogay, T. Yakupov, M. Sarsenova, B. Umbayev, A. Nurakhmetov, K. Tazhin, V. V. Yakovlev, and Z. N. Utegulov, “Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones,” J. Biomed. Opt. 23, 1–11 (2018).
[Crossref] [PubMed]

J. N. Bixler, B. H. Hokr, M. L. Denton, G. D. Noojin, A. D. Shingledecker, H. T. Beier, R. J. Thomas, B. A. Rockwell, and V. V. Yakovlev, “Assessment of tissue heating under tunable near-infrared radiation,” J. Biomed. Opt. 19, 70501 (2014).
[Crossref]

J. Biophotonics (3)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8, 408–414 (2015).
[Crossref]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10, 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9, 201–207 (2015).
[Crossref]

J. Mod. Opt. (1)

R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55, 3237–3254 (2008).
[Crossref]

J. Raman Spectrosc. (1)

V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957–964 (2003).
[Crossref]

Light. Sci. Appl. (1)

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light. Sci. Appl. 7, 17139 (2018).
[Crossref]

Nat. Clin. Pract. Cardiovasc. Med. (1)

J. Blacher and M. E. Safar, “Large-artery stiffness, hypertension and cardiovascular risk in older patients,” Nat. Clin. Pract. Cardiovasc. Med. 2, 450–455 (2005).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Suresh and G Bao, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12, 1132–1134 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

W. H. Roos, R. Bruinsma, and G. J. L. Wuite, “Physical virology,” Nat. Phys. 6, 733 (2010).
[Crossref]

Nat. Rev. Genet. (1)

A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, and C.-P. Heisenberg, “Quantitative approaches in developmental biology,” Nat. Rev. Genet. 10, 517–530 (2009).
[Crossref] [PubMed]

Nature (4)

P. G. Gillespie and R. G. Walker, “Molecular basis of mechanosensory transduction,” Nature 413, 194 (2001).
[Crossref] [PubMed]

T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L. Mahadevan, and C. J. Tabin, “On the growth and form of the gut,” Nature 476, 57 (2011).
[Crossref] [PubMed]

R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature 428, 487–492 (2004).
[Crossref] [PubMed]

E. Jonietz, “Mechanics: The forces of cancer,” Nature 491, S56–S57 (2012).
[Crossref]

Nucl. (Austin, Tex.) (1)

J. Garbrecht, H. Hornegger, S. Herbert, T. Kaufmann, J. Gotzmann, K. Elsayad, and D. Slade, “Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites,” Nucl. (Austin, Tex.) 9, 474–491 (2018).

Opt. Express (2)

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22, 144–148 (2014).
[Crossref]

Z. Coker, M. Troyanova-Wood, A. J. Traverso, T. Yakupov, Z. N. Utegulov, and V. V. Yakovlev, “Assessing performance of modern Brillouin spectrometers,” Opt. Express 26, 2400–2409 (2018).
[Crossref]

Opt. Lett. (2)

Optica (1)

Philos. T. R. Soc. S-A (1)

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin Scattering in Systems of Biological Significance [and Discussion],” Philos. T. R. Soc. S-A 293, 341–348 (1979).
[Crossref]

Proc. IEEE (1)

D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

Sci. Rep. (2)

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin Scattering Microscopic Imaging,” Sci. Rep. 5, 1–7 (2015).

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signal. 9, 5 – rs5 (2016).
[Crossref]

Zeitschrift für Angewandte Physik (1)

H. Boersch and H. Eichler, “Beugung an einem mit stehenden Lichtwellen gepumpten Rubin,” Zeitschrift für Angewandte Physik 22, 378 (1967).

Other (5)

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced dynamic gratings., Springer series in optical sciences: v. 50 (Springer-Verlag, 1986).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Torok, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface12 (2015).
[Crossref] [PubMed]

I. L. Fabelinskii, Molecular Scattering of Light (Plenum Press, 1968).
[Crossref]

J. N. Bixler, B. H. Hokr, C. A. Oian, G. D. Noojin, R. J. Thomas, and V. V. Yakovlev, “Assessment of tissue heating under tunable laser radiation from 1100 nm to 1550 nm,” arXiv e-print p. 1509.08022 (2015).

B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, vol. 42 (Springer-Verlag, 1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simplified schematic of the ISBS setup. The two beams are loosely focused on a transmission grating (TG) and re-imaged on the sample. The signal is then optically filtered and sent to the photodiode. CL - Cylindrical Lens, SL - Spherical Lens, CM - Cold mirror (all other unmarked mirrors are dielectric)
Fig. 2
Fig. 2 Simplified schematic of the SpBS setup. After the interaction the spontaneous Rayleigh scattered light is filtered with a Rb cell. The beam is then focused into a VIPA where it is dispersed. The far field image is collected with a CCD and then analyzed. SL - Spherical Lens, CL - Cylindrical Lens, PC - Polarization Cube
Fig. 3
Fig. 3 Averaged sample spectra for SpBS (a) and ISBS (b) of acetone.
Fig. 4
Fig. 4 The Allan standard deviations of the SpBS and ISBS signal of acetone verses measurement time. ISBS achieves a lower uncertainty, and does so orders of magnitude faster. The ISBS signal increases after 0.5 s has been eliminated for clarity of the graph.
Fig. 5
Fig. 5 Measured ISBS frequencies of aqueous glucose solutions at different concentrations. The thin blue line is the pure water reference and the thick translucent blue line is the corresponding pure water error.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ω = 2 | k | υ sin ( Θ / 2 ) = 2 n ω β sin ( Θ / 2 )
Λ = λ pump 2 sin ( θ pump / 2 )
Λ = ( f 2 f 1 ) Λ 0 2 ,
f signal = υ Λ ,
I S = I Ref + I R + 2 I Ref I R cos ( θ p ) ,
σ y 2 ( τ ) = 1 2 ( y ¯ n + 1 y ¯ n ) 2 ,

Metrics