Abstract

Tracking SLO systems equipped to perform retinally targeted stimulus delivery typically use near-IR wavelengths for retinal imaging and eye tracking and visible wavelengths for stimulation. The lateral offsets between wavelengths caused by transverse chromatic aberration (TCA) must be carefully corrected in order to deliver targeted stimuli to the correct location on the retina. However, both the magnitude and direction of the TCA offset is dependent on the position of the eye’s pupil relative to the incoming beam, and thus can change dynamically within an experimental session without proper control of the pupil position. The goals of this study were twofold: 1) To assess sources of variability in TCA alignments as a function of pupil displacements in an SLO and 2) To demonstrate a novel method for real-time correction of chromatic offsets. To summarize, we found substantial between- and within-subject variability in TCA in the presence of monochromatic aberrations. When adaptive optics was used to fully correct for monochromatic aberrations, variability both within and between observers was minimized. In a second experiment, we demonstrate that pupil tracking can be used to update stimulus delivery in the SLO in real time to correct for variability in chromatic offsets with pupil displacements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Eye-tracking technology for real-time monitoring of transverse chromatic aberration

Claudio M. Privitera, Ramkumar Sabesan, Simon Winter, Pavan Tiruveedhula, and Austin Roorda
Opt. Lett. 41(8) 1728-1731 (2016)

Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye

Wolf M. Harmening, Pavan Tiruveedhula, Austin Roorda, and Lawrence C. Sincich
Biomed. Opt. Express 3(9) 2066-2077 (2012)

Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope

Kate Grieve, Pavan Tiruveedhula, Yuhua Zhang, and Austin Roorda
Opt. Express 14(25) 12230-12242 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980).
    [Crossref] [PubMed]
  2. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  3. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
    [Crossref] [PubMed]
  4. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  5. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [Crossref] [PubMed]
  6. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [Crossref] [PubMed]
  7. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
    [Crossref] [PubMed]
  8. W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
    [Crossref] [PubMed]
  9. Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
    [Crossref] [PubMed]
  10. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
    [Crossref] [PubMed]
  11. R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
    [Crossref] [PubMed]
  12. W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
    [Crossref] [PubMed]
  13. B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
    [Crossref] [PubMed]
  14. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37(5), 321–336 (1947).
    [Crossref] [PubMed]
  15. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957).
    [Crossref] [PubMed]
  16. W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
    [Crossref] [PubMed]
  17. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [Crossref] [PubMed]
  18. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13), 6213–6225 (2006).
    [Crossref] [PubMed]
  19. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  20. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref] [PubMed]
  21. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4(8), 1666–1672 (1987).
    [Crossref] [PubMed]
  22. P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
    [Crossref] [PubMed]
  23. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref] [PubMed]
  24. W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
    [Crossref] [PubMed]
  25. C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
    [Crossref] [PubMed]
  26. S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
    [Crossref] [PubMed]
  27. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
    [Crossref] [PubMed]
  28. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [Crossref] [PubMed]
  29. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  30. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
    [Crossref] [PubMed]
  31. N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
    [Crossref] [PubMed]
  32. D. Kleinbaum, L. Kupper, A. Nizam, and E. Rosenberg, Applied regression analysis and other multivariable methods (Nelson Education, 2013).
  33. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Series B Stat. Methodol. 57(1), 289–300 (1995).
  34. P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
    [Crossref]
  35. M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30(11), 1587–1602 (1990).
    [Crossref] [PubMed]
  36. M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusions,” Vision Res. 30(11), 1793–1810 (1990).
    [Crossref] [PubMed]
  37. D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
    [Crossref] [PubMed]
  38. H. Akutsu, P. V. McGraw, and D. M. Levi, “Alignment of separated patches: multiple location tags,” Vision Res. 39(4), 789–801 (1999).
    [Crossref] [PubMed]
  39. G. Mather and M. Morgan, “Irradiation: implications for theories of edge localization,” Vision Res. 26(6), 1007–1015 (1986).
    [Crossref] [PubMed]
  40. D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval?” J. Opt. Soc. Am. A 4(7), 1304–1313 (1987).
    [Crossref] [PubMed]
  41. K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Vernier acuity for an opposite contrast stimulus,” Invest. Ophthalmol. Vis. Sci. 29, 138 (1988).
  42. D. M. Levi, B. C. Jiang, and S. A. Klein, “Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales,” Vision Res. 30(11), 1735–1750 (1990).
    [Crossref] [PubMed]
  43. R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19(2), 207–221 (1990).
    [Crossref] [PubMed]
  44. D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36(4), 573–588 (1996).
    [Crossref] [PubMed]
  45. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [Crossref] [PubMed]

2018 (1)

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

2017 (2)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

2016 (3)

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

2015 (2)

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

2014 (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

2012 (3)

2010 (1)

2007 (1)

2006 (3)

2005 (1)

2002 (1)

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

1999 (2)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

H. Akutsu, P. V. McGraw, and D. M. Levi, “Alignment of separated patches: multiple location tags,” Vision Res. 39(4), 789–801 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (2)

D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
[Crossref] [PubMed]

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36(4), 573–588 (1996).
[Crossref] [PubMed]

1995 (2)

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref] [PubMed]

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Series B Stat. Methodol. 57(1), 289–300 (1995).

1992 (1)

1990 (7)

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30(11), 1587–1602 (1990).
[Crossref] [PubMed]

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusions,” Vision Res. 30(11), 1793–1810 (1990).
[Crossref] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

D. M. Levi, B. C. Jiang, and S. A. Klein, “Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales,” Vision Res. 30(11), 1735–1750 (1990).
[Crossref] [PubMed]

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19(2), 207–221 (1990).
[Crossref] [PubMed]

1988 (1)

K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Vernier acuity for an opposite contrast stimulus,” Invest. Ophthalmol. Vis. Sci. 29, 138 (1988).

1987 (2)

1986 (1)

G. Mather and M. Morgan, “Irradiation: implications for theories of edge localization,” Vision Res. 26(6), 1007–1015 (1986).
[Crossref] [PubMed]

1982 (1)

P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

1980 (1)

1976 (1)

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

1957 (1)

1947 (1)

Akutsu, H.

H. Akutsu, P. V. McGraw, and D. M. Levi, “Alignment of separated patches: multiple location tags,” Vision Res. 39(4), 789–801 (1999).
[Crossref] [PubMed]

Arathorn, D. W.

Artal, P.

Atchison, D. A.

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Barrett, B. T.

D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
[Crossref] [PubMed]

Bedell, H. E.

Bedford, R. E.

Benjamini, Y.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Series B Stat. Methodol. 57(1), 289–300 (1995).

Bernstein, P. S.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Burns, S. A.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Campbell, M.

Campbell, M. C.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30(11), 1587–1602 (1990).
[Crossref] [PubMed]

Carney, L. G.

P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Charman, W. N.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Chisholm, W.

Cortes, D.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

de Boer, J. F.

Domdei, L.

Domdei, N.

Donnelly Iii, W.

Dorronsoro, C.

Drexler, W.

Duncan, J. L.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Fernández, E. J.

Glennerster, A.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusions,” Vision Res. 30(11), 1793–1810 (1990).
[Crossref] [PubMed]

Grieve, K.

Griffin, D. R.

Harmening, W. M.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

Harrison, E. M.

M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30(11), 1587–1602 (1990).
[Crossref] [PubMed]

Hebert, T.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Hermann, B.

Hochberg, Y.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Series B Stat. Methodol. 57(1), 289–300 (1995).

Hole, G. J.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusions,” Vision Res. 30(11), 1793–1810 (1990).
[Crossref] [PubMed]

Holland, J.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Holz, F. G.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Hughes, G. W.

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Jiang, B. C.

D. M. Levi, B. C. Jiang, and S. A. Klein, “Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales,” Vision Res. 30(11), 1735–1750 (1990).
[Crossref] [PubMed]

Jones, D. G.

K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Vernier acuity for an opposite contrast stimulus,” Invest. Ophthalmol. Vis. Sci. 29, 138 (1988).

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Kiely, P. M.

P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Klein, S. A.

D. M. Levi, B. C. Jiang, and S. A. Klein, “Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales,” Vision Res. 30(11), 1735–1750 (1990).
[Crossref] [PubMed]

Levi, D. M.

H. Akutsu, P. V. McGraw, and D. M. Levi, “Alignment of separated patches: multiple location tags,” Vision Res. 39(4), 789–801 (1999).
[Crossref] [PubMed]

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36(4), 573–588 (1996).
[Crossref] [PubMed]

D. M. Levi, B. C. Jiang, and S. A. Klein, “Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales,” Vision Res. 30(11), 1735–1750 (1990).
[Crossref] [PubMed]

D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval?” J. Opt. Soc. Am. A 4(7), 1304–1313 (1987).
[Crossref] [PubMed]

Liang, J.

Lidkea, B.

Linden, M.

Lujan, B. J.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Lundström, L.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Mather, G.

G. Mather and M. Morgan, “Irradiation: implications for theories of edge localization,” Vision Res. 26(6), 1007–1015 (1986).
[Crossref] [PubMed]

McGraw, P. V.

H. Akutsu, P. V. McGraw, and D. M. Levi, “Alignment of separated patches: multiple location tags,” Vision Res. 39(4), 789–801 (1999).
[Crossref] [PubMed]

D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
[Crossref] [PubMed]

Miller, D. T.

Mitchell, D. E.

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19(2), 207–221 (1990).
[Crossref] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Morgan, M.

G. Mather and M. Morgan, “Irradiation: implications for theories of edge localization,” Vision Res. 26(6), 1007–1015 (1986).
[Crossref] [PubMed]

Morgan, M. J.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusions,” Vision Res. 30(11), 1793–1810 (1990).
[Crossref] [PubMed]

Murphy, K. M.

K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Vernier acuity for an opposite contrast stimulus,” Invest. Ophthalmol. Vis. Sci. 29, 138 (1988).

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Neitz, J.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

O’Shea, R. P.

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19(2), 207–221 (1990).
[Crossref] [PubMed]

Ogboso, Y. U.

Pacey, I.

D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
[Crossref] [PubMed]

Parker, A.

Pascual, D.

Pomerantzeff, O.

Považay, B.

Prieto, P. M.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Privitera, C.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Privitera, C. M.

Queener, H.

Reiniger, J. L.

Romero-Borja, F.

Roorda, A.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2017).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
[Crossref] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Rynders, M.

Sabesan, R.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

Schmidt, B. P.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Schwartz, S. D.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Sheehy, C. K.

Simonet, P.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30(11), 1587–1602 (1990).
[Crossref] [PubMed]

Sincich, L. C.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Thibos, L. N.

Tiruveedhula, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[Crossref] [PubMed]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
[Crossref] [PubMed]

Tuten, W. S.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

Unsbo, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Unterhuber, A.

Van Sluyters, R. C.

K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Vernier acuity for an opposite contrast stimulus,” Invest. Ophthalmol. Vis. Sci. 29, 138 (1988).

Vinas, M.

Vogel, C. R.

Wald, G.

Wang, Q.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Waugh, S. J.

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36(4), 573–588 (1996).
[Crossref] [PubMed]

Webb, R. H.

Westheimer, G.

Whitaker, D.

D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
[Crossref] [PubMed]

Williams, D. R.

Winter, S.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref] [PubMed]

Wyszecki, G.

Yang, Q.

Ye, M.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Zhang, Y.

Appl. Opt. (2)

Biomed. Opt. Express (4)

Invest. Ophthalmol. Vis. Sci. (2)

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Vernier acuity for an opposite contrast stimulus,” Invest. Ophthalmol. Vis. Sci. 29, 138 (1988).

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

J. Neurosci. (2)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

J. R. Stat. Soc. Series B Stat. Methodol. (1)

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Series B Stat. Methodol. 57(1), 289–300 (1995).

J. Vis. (1)

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Opt. Acta (Lond.) (1)

P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.) 29(8), 1027–1040 (1982).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

Perception (1)

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19(2), 207–221 (1990).
[Crossref] [PubMed]

Sci. Adv. (1)

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8(1), 8561 (2018).
[Crossref] [PubMed]

Vision Res. (12)

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30(11), 1587–1602 (1990).
[Crossref] [PubMed]

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusions,” Vision Res. 30(11), 1793–1810 (1990).
[Crossref] [PubMed]

D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36(18), 2957–2970 (1996).
[Crossref] [PubMed]

H. Akutsu, P. V. McGraw, and D. M. Levi, “Alignment of separated patches: multiple location tags,” Vision Res. 39(4), 789–801 (1999).
[Crossref] [PubMed]

G. Mather and M. Morgan, “Irradiation: implications for theories of edge localization,” Vision Res. 26(6), 1007–1015 (1986).
[Crossref] [PubMed]

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36(4), 573–588 (1996).
[Crossref] [PubMed]

D. M. Levi, B. C. Jiang, and S. A. Klein, “Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales,” Vision Res. 30(11), 1735–1750 (1990).
[Crossref] [PubMed]

Other (1)

D. Kleinbaum, L. Kupper, A. Nizam, and E. Rosenberg, Applied regression analysis and other multivariable methods (Nelson Education, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 TCA induced by pupil displacements. (A) The stimulus used for the alignment task. Subjects aligned a green (λ = 543 nm) target square to be centered with respect to the surrounding decrement (λ = 840 nm) squares. (B) Pupil tracking was performed in real time throughout the experiment. The experimenter induced pupil offsets relative to the reference pupil position, R(x, y).
Fig. 2
Fig. 2 Changes in TCA (λ = 543 and 840 nm) with pupil displacement in the AOSLO for subjects 20075 (A-D) and 20076 (E-H). TCA was measured subjectively under different optical corrections: Defocus only (panels A and E), defocus and astigmatism (B and F), and all aberrations (C and G). Panels D and H show image-based TCA measurements following correction for all aberrations. The horizontal (blue rightward triangles) and vertical (gray upward triangles) components of the chromatic offset follow a linear relationship with the magnitude of the horizontal and vertical pupil offsets, respectively. Solid lines show fits to Eq. (2).
Fig. 3
Fig. 3 Slopes for horizontal (blue) and vertical (gray) changes in TCA with pupil displacements for subjects 20075 (left) and 20076 (right) under different optical corrections: defocus, defocus + astigmatism, and all aberrations. Slope estimates for changes in TCA with all aberrations corrected are reported for two measurement methods, subjective alignments and objective image-based. Error bars are standard errors of the slope estimates. Brackets show statistically significant comparisons (* p < 0.05, ** p < 0.01, *** p < 0.001).
Fig. 4
Fig. 4 Image-based estimates of TCA at offsets relative to the pupil reference. Each data point represents the average TCA offset across 30 video frames plotted against the pupil offset relative to the reference position. Each subjects’ data (represented here by different colored circles) were individually fit to Eq. (1) and scaled so that ΔTCA, the change in TCA relative to its value at the reference, was zero at the reference pupil position (pupil offset = 0 mm). The combined data were then fit to Eq. (2) (solid black line).
Fig. 5
Fig. 5 Simulations of the appearance of the TCA stimulus as a function of pupil position. A) Model wavefront of a typical eye used for simulations. Units for the color bar are micrometers. Colored circles overlaid on the wavefront image demarcate the area of the pupil which was sampled to generate the PSFs shown in B). Defocus was set to zero for the centered position only (yellow circle). The pupil offsets for each sample relative to the centered position are given in millimeters (mm) along the margins of panels B) and C). C) Simulations of the appearance of the stimulus, generated by convolving the PSFs shown in B) with the aligned stimulus (Fig. 1A). Each image represents the stimulus appearance at a different vertical or horizontal pupil offset (units are mm). Note that this does not include the offset between stimuli incurred by chromatic aberration, and thus is representative only of the appearance with monochromatic blur.
Fig. 6
Fig. 6 Subjective alignments of the stimulus at different pupil positions for three subjects: A) 20093, B) 20106, and C) 10003. Pupil offsets are relative to the reference pupil position at zero. Subjects’ alignments are expressed as ΔTCA, the change in TCA offset (λ = 532 and 840 nm) relative to its magnitude at the reference pupil position. Data were fit with ordinary least squares (OLS) regression separately for horizontal (blue rightward triangles) and vertical (gray upward triangles) changes in TCA for horizontal and vertical pupil offsets, respectively.
Fig. 7
Fig. 7 Individual differences in anisotropy of mx and my. The log ratio log10(mx/my), is shown for each subject. When mx = my, the log ratio is 0. Points above the line indicate mx > my, and below the line mx < my. Error bars are 95% bootstrapped confidence intervals.
Fig. 8
Fig. 8 Compensation for ΔTCA with pupil displacement. Results are shown for the same subjects as in Fig. 6. Slopes (m(x, y)) for horizontal (blue rightward triangles) and vertical (gray upward triangles) pupil offsets were not significantly different from zero, except for mx in 20106.

Tables (1)

Tables Icon

Table 1 Parameter estimates for fits to Eq. (1) for image-based TCA measurements (all aberrations corrected)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TCA(x,y)=m(x,y)×(R(x,y)P(x,y))+TCA(0,0),
ΔTCA(x,y)=m(x,y)×(R(x,y)P(x,y)),