Abstract

Two-stage cross axis VIPA spectrometers have been widely used in Brillouin microscopy since they provide single shot spectral measurements at high throughput and extinction. However, this spectrometer configuration presents challenges such as size, cost and alignment difficulties between the two cascaded etalons. Here, we present a cross-axis VIPA spectrometer that implements a single etalon, using a light recirculation architecture to achieve the multistage configuration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy

Giuliano Scarcelli and Seok Hyun Yun
Opt. Express 19(11) 10913-10922 (2011)

Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging

Eitan Edrei, Malte C. Gather, and Giuliano Scarcelli
Opt. Express 25(6) 6895-6903 (2017)

Assessing performance of modern Brillouin spectrometers

Zachary Coker, Maria Troyanova‐Wood, Andrew J. Traverso, Talgat Yakupov, Zhandos N. Utegulov, and Vladislav V. Yakovlev
Opt. Express 26(3) 2400-2409 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène-Influence de l’agitation thermique,” in Annales de Physique (EDP Sciences, 1922), 9(17), pp. 88–122.
  2. L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim, Obs. 58(September), 381 (1926).
  3. K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
    [Crossref] [PubMed]
  4. K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
    [Crossref]
  5. J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
    [Crossref]
  6. J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31(15), 2839–2848 (1992).
    [Crossref] [PubMed]
  7. J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
    [Crossref]
  8. J. R. Sandercock, “High resolution, high contrast Fabry-Perot spectrometer,” (1977).
  9. G. Matsui, S. Kojima, and S. I. Itoh, “Rapid Brillouin scattering measurement of the fast relaxation process in a glass-forming intermediate liquid,” Japanese J. Appl. Physics. 37(5), 2812–2814 (1998).
    [Crossref]
  10. S. I. Itoh, T. Yamana, and S. Kojima, “Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,” Japanese J. Appl. Physics 35(5), 2879–2881 (1996).
    [Crossref]
  11. S. I. Itoh, “Very rapid nonscanning Brillouin spectroscopy using fixed etalons and multichannel detectors,” Japanese J. Appl. Physics.  37(5), 3134–3135 (1998).
    [Crossref]
  12. G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
    [Crossref] [PubMed]
  13. S. H. Yun and G. Scarcelli, “Apparatus and Method for Cross Axis Parallel Spectroscopy,” (2008).
  14. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [Crossref] [PubMed]
  15. K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
    [Crossref]
  16. D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
    [Crossref] [PubMed]
  17. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [Crossref] [PubMed]
  18. G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
    [Crossref] [PubMed]
  19. G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
    [Crossref] [PubMed]
  20. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  21. G. Scarcelli, P. Kim, and S. H. Yun, “In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  22. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [Crossref] [PubMed]
  23. P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
    [Crossref] [PubMed]
  24. G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
    [Crossref] [PubMed]
  25. G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
    [Crossref] [PubMed]
  26. Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
    [Crossref] [PubMed]
  27. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  28. J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
    [Crossref] [PubMed]
  29. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  30. M. Nikolić, C. Conrad, J. Zhang, and G. Scarcelli, “Noninvasive Imaging: Brillouin Confocal Microscopy,” in (Springer, Cham, 2018), pp. 351–364.
  31. I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
    [Crossref] [PubMed]
  32. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
    [Crossref]
  33. Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
    [Crossref] [PubMed]
  34. R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
    [Crossref] [PubMed]
  35. J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
    [Crossref] [PubMed]
  36. Z. Meng, J. A. Hanson, and V. V. Yakovlev, “Watching embryonic development in a new light: elasticity specific imaging with dual Brillouin/Raman microspectroscopy,” in A. M. Rollins, S. E. Fraser, and M. A. Choma, eds. (International Society for Optics and Photonics, 2016), 9716, p. 97160L.
  37. R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
    [Crossref] [PubMed]
  38. G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
    [Crossref] [PubMed]
  39. A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
    [Crossref] [PubMed]
  40. A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
    [Crossref] [PubMed]
  41. P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
    [Crossref] [PubMed]
  42. G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
    [Crossref]
  43. E. Edrei, M. C. Gather, and G. Scarcelli, “Noise reduction in Brillouin microscopy via spectral coronagraphy,” in Frontiers in Optics (OSA, 2017), p. FM4B. 2.
  44. E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
    [Crossref] [PubMed]
  45. Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
    [Crossref] [PubMed]
  46. K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” J. Vis. Exp. 106, e53468 (2015).
    [Crossref] [PubMed]
  47. Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 08(04), 1550021 (2015).
    [Crossref]
  48. Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
    [Crossref] [PubMed]
  49. G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
    [Crossref]
  50. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
    [Crossref] [PubMed]
  51. G. Antonacci, “Dark-field Brillouin microscopy,” Opt. Lett. 42(7), 1432–1435 (2017).
    [Crossref] [PubMed]

2018 (4)

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref] [PubMed]

2017 (6)

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
[Crossref] [PubMed]

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
[Crossref] [PubMed]

E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
[Crossref] [PubMed]

G. Antonacci, “Dark-field Brillouin microscopy,” Opt. Lett. 42(7), 1432–1435 (2017).
[Crossref] [PubMed]

2016 (8)

Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
[Crossref] [PubMed]

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

2015 (7)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” J. Vis. Exp. 106, e53468 (2015).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 08(04), 1550021 (2015).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

2014 (2)

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

2013 (1)

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

2012 (2)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

2011 (2)

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

2008 (2)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

2007 (1)

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

2005 (1)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[Crossref]

2002 (1)

K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
[Crossref]

1998 (2)

S. I. Itoh, “Very rapid nonscanning Brillouin spectroscopy using fixed etalons and multichannel detectors,” Japanese J. Appl. Physics.  37(5), 3134–3135 (1998).
[Crossref]

G. Matsui, S. Kojima, and S. I. Itoh, “Rapid Brillouin scattering measurement of the fast relaxation process in a glass-forming intermediate liquid,” Japanese J. Appl. Physics. 37(5), 2812–2814 (1998).
[Crossref]

1996 (1)

S. I. Itoh, T. Yamana, and S. Kojima, “Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,” Japanese J. Appl. Physics 35(5), 2879–2881 (1996).
[Crossref]

1992 (1)

1986 (1)

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

1970 (1)

J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

1926 (1)

L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim, Obs. 58(September), 381 (1926).

Abuhattum, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Akhenblit, P.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Allsopp, L. P.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Amer, M. S.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Antonacci, G.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

G. Antonacci, “Dark-field Brillouin microscopy,” Opt. Lett. 42(7), 1432–1435 (2017).
[Crossref] [PubMed]

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Ballmann, C. W.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Berghaus, K. V.

K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” J. Vis. Exp. 106, e53468 (2015).
[Crossref] [PubMed]

Besner, S.

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

Bustamante Lopez, S. C.

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
[Crossref] [PubMed]

Cohen, Y.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Cojoc, G.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Connon, C. J.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
[Crossref] [PubMed]

Czarske, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

De Panfilis, S.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

de Silva, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

de Turris, V.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Delre, E.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Di Domenico, G.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Edrei, E.

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Eltony, A. M.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Filloux, A.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Finnell, R. H.

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Fiore, A.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

Franze, K.

I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Gather, M. C.

Gouveia, R. M.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Guck, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Hochheimer, H. D.

K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
[Crossref]

Ii, R. P.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Itoh, S. I.

G. Matsui, S. Kojima, and S. I. Itoh, “Rapid Brillouin scattering measurement of the fast relaxation process in a glass-forming intermediate liquid,” Japanese J. Appl. Physics. 37(5), 2812–2814 (1998).
[Crossref]

S. I. Itoh, “Very rapid nonscanning Brillouin spectroscopy using fixed etalons and multichannel detectors,” Japanese J. Appl. Physics.  37(5), 3134–3135 (1998).
[Crossref]

S. I. Itoh, T. Yamana, and S. Kojima, “Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,” Japanese J. Appl. Physics 35(5), 2879–2881 (1996).
[Crossref]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

John, W. T.

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Karampatzakis, A.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Kim, H.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
[Crossref] [PubMed]

Kim, K.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

Kojima, S.

G. Matsui, S. Kojima, and S. I. Itoh, “Rapid Brillouin scattering measurement of the fast relaxation process in a glass-forming intermediate liquid,” Japanese J. Appl. Physics. 37(5), 2812–2814 (1998).
[Crossref]

S. I. Itoh, T. Yamana, and S. Kojima, “Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,” Japanese J. Appl. Physics 35(5), 2879–2881 (1996).
[Crossref]

Kondiboyina, A.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Koski, K. J.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[Crossref]

K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
[Crossref]

Krams, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Krüger, J. K.

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

Kwok, S. J. J.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Larin, K. V.

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Lepert, G.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Liptak, D. C.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Lock, J. A.

Maguire, J. F.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Mandelstam, L. I.

L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim, Obs. 58(September), 381 (1926).

Marx, A.

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

Matsui, G.

G. Matsui, S. Kojima, and S. I. Itoh, “Rapid Brillouin scattering measurement of the fast relaxation process in a glass-forming intermediate liquid,” Japanese J. Appl. Physics. 37(5), 2812–2814 (1998).
[Crossref]

McKiernan, K.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Mehta, V. V.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Meissner, K. E.

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
[Crossref] [PubMed]

Meng, Z.

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 08(04), 1550021 (2015).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Möckel, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Möllmert, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Müller, J.

K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
[Crossref]

Müller, P.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nou, X. A.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
[Crossref] [PubMed]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Pedrigi, R. M.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Peetz, L.

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

Pineda, R.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Raghunathan, R.

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Ramier, A.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Reber, J. C.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Rice, S. A.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Rippy, J.

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Roberts, R.

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

Rosa, A.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Ruocco, G.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sandercock, J. R.

J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

J. R. Sandercock, “High resolution, high contrast Fabry-Perot spectrometer,” (1977).

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref] [PubMed]

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
[Crossref] [PubMed]

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
[Crossref] [PubMed]

E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” J. Vis. Exp. 106, e53468 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

S. H. Yun and G. Scarcelli, “Apparatus and Method for Cross Axis Parallel Spectroscopy,” (2008).

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Schlüßler, R.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Scully, M. O.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Seasholtz, R. G.

Seiler, T. G.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Shao, P.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

Singh, M.

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

Song, C. Z.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Steelman, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Steelman, Z. A.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Thompson, J. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Török, P.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Traverso, A. J.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Troyanova-Wood, M. A.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Unruh, H. G.

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

Weber, I. P.

I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Wohland, T.

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Wu, C.

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Yakovlev, V. V.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
[Crossref] [PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 08(04), 1550021 (2015).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Yamana, T.

S. I. Itoh, T. Yamana, and S. Kojima, “Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,” Japanese J. Appl. Physics 35(5), 2879–2881 (1996).
[Crossref]

Yarger, J. L.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[Crossref]

K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
[Crossref]

Yun, S. H.

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref] [PubMed]

I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” J. Vis. Exp. 106, e53468 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

S. H. Yun and G. Scarcelli, “Apparatus and Method for Cross Axis Parallel Spectroscopy,” (2008).

Yun, S. H. A.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Yun, S.-H.

Zhang, J.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
[Crossref] [PubMed]

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zimmermann, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300 (2016).
[Crossref]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Appl. Spectrosc. (1)

Biophys. J. (2)

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Colloid Polym. Sci. (1)

J. K. Krüger, A. Marx, L. Peetz, R. Roberts, and H. G. Unruh, “Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries,” Colloid Polym. Sci. 264(5), 403–414 (1986).
[Crossref]

Commun Biol (1)

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Faraday Discuss. (1)

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187(0), 415–428 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S. H. A. Yun, “Effects of corneal hydration on brillouin microscopy in vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

R. Raghunathan, J. Zhang, C. Wu, J. Rippy, M. Singh, K. V. Larin, and G. Scarcelli, “Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–6 (2017).
[Crossref] [PubMed]

J. Biophotonics (2)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, S. C. Bustamante Lopez, K. E. Meissner, and V. V. Yakovlev, “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophotonics 9(3), 201–207 (2016).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

Z. Meng and V. V. Yakovlev, “Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer,” J. Innov. Opt. Health Sci. 08(04), 1550021 (2015).
[Crossref]

J. R. Soc. Interface (1)

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

J. Vis. Exp. (1)

K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” J. Vis. Exp. 106, e53468 (2015).
[Crossref] [PubMed]

Japanese J. Appl. Physics (2)

S. I. Itoh, T. Yamana, and S. Kojima, “Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,” Japanese J. Appl. Physics 35(5), 2879–2881 (1996).
[Crossref]

S. I. Itoh, “Very rapid nonscanning Brillouin spectroscopy using fixed etalons and multichannel detectors,” Japanese J. Appl. Physics.  37(5), 3134–3135 (1998).
[Crossref]

Japanese J. Appl. Physics. (1)

G. Matsui, S. Kojima, and S. I. Itoh, “Rapid Brillouin scattering measurement of the fast relaxation process in a glass-forming intermediate liquid,” Japanese J. Appl. Physics. 37(5), 2812–2814 (1998).
[Crossref]

Lab Chip (1)

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip 17(4), 663–670 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Nat. Methods (2)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

NPJ Biofilms Microbiomes (1)

A. Karampatzakis, C. Z. Song, L. P. Allsopp, A. Filloux, S. A. Rice, Y. Cohen, T. Wohland, and P. Török, “Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging,” NPJ Biofilms Microbiomes 3(1), 20 (2017).
[Crossref] [PubMed]

Opt. Commun. (1)

J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Biol. (1)

I. P. Weber, S. H. Yun, G. Scarcelli, and K. Franze, “The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy,” Phys. Biol. 14(6), 065006 (2017).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

G. Antonacci, S. De Panfilis, G. Di Domenico, E. Delre, and G. Ruocco, “Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Rev. Sci. Instrum. (2)

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

K. J. Koski, J. Müller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3 I), 1235–1241 (2002).
[Crossref]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zh. Russ. Fiz-Khim, Obs. (1)

L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim, Obs. 58(September), 381 (1926).

Other (7)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène-Influence de l’agitation thermique,” in Annales de Physique (EDP Sciences, 1922), 9(17), pp. 88–122.

J. R. Sandercock, “High resolution, high contrast Fabry-Perot spectrometer,” (1977).

S. H. Yun and G. Scarcelli, “Apparatus and Method for Cross Axis Parallel Spectroscopy,” (2008).

M. Nikolić, C. Conrad, J. Zhang, and G. Scarcelli, “Noninvasive Imaging: Brillouin Confocal Microscopy,” in (Springer, Cham, 2018), pp. 351–364.

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res., epub ahead of print (2018).
[Crossref] [PubMed]

Z. Meng, J. A. Hanson, and V. V. Yakovlev, “Watching embryonic development in a new light: elasticity specific imaging with dual Brillouin/Raman microspectroscopy,” in A. M. Rollins, S. E. Fraser, and M. A. Choma, eds. (International Society for Optics and Photonics, 2016), 9716, p. 97160L.

E. Edrei, M. C. Gather, and G. Scarcelli, “Noise reduction in Brillouin microscopy via spectral coronagraphy,” in Frontiers in Optics (OSA, 2017), p. FM4B. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) 2-stage cross axis VIPA spectrometer in which light is dispersed on two spatial axis with two different etalons in cross axis configuration. (b) Single etalon cross axis VIPA spectroscopy principle; the output pattern from the first pass is rotated and recirculated through the same etalon.
Fig. 2
Fig. 2 Experimental setup of a single etalon cross axis VIPA spectrometer. SMF: single mode fiber, HWP: half wave plate, C: cylindrical lens, f = 200mm, S: spherical lens, f = 200 mm, PBS: polarized beam splitter
Fig. 3
Fig. 3 (a) Effective throughput and finesse performance as a function of the VIPA order. Effective throughput is measured as ratio between total power output at given order after two VIPA stages and the overall input power. Finesse is measured as spectral linewidth over free spectral range (FSR). (b) Step-by-step throughput characterization. Blue bars report the transmission efficiency of every element, the red line shows the overall throughput at every location. In parenthesis is expressed the iteration through a certain optical element.
Fig. 4
Fig. 4 (a) Camera frame and line plot of laser profile on the CCD camera. (b) Extinction ratio measurement of single stage and two stage VIPA spectrometer.

Metrics