Abstract

Fiber bundle endomicroscopy techniques have been used for numerous minimally invasive imaging applications. However, these techniques may provide limited spatial sampling due to the limited number of imaging cores inside the fiber bundle. Here, we present a custom-fabricated miniature objective that can be coupled to a fiber bundle and can overcome the fiber bundle’s sampling threshold by utilizing the spectral encoding concept. The objective has an NA of 0.3 and an outer diameter of 2.4 mm, and can yield a maximum spatial resolution of 2 μm. The objective has been validated against a USAF resolution target and ex vivo tissue samples, and as a result yielded images with higher resolution and more details after the spectral encoding concept was employed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a multimodal foveated endomicroscope for the detection of oral cancer

Adam Shadfan, Hawraa Darwiche, Jesus Blanco, Ann Gillenwater, Rebecca Richards-Kortum, and Tomasz S. Tkaczyk
Biomed. Opt. Express 8(3) 1525-1535 (2017)

Achromatized endomicroscope objective for optical biopsy

Matthew Kyrish and Tomasz S. Tkaczyk
Biomed. Opt. Express 4(2) 287-297 (2013)

Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope

Li Yang, Jiafu Wang, Geng Tian, Jing Yuan, Qian Liu, and Ling Fu
Opt. Express 24(1) 473-484 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  2. A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
    [Crossref] [PubMed]
  3. “Types of biopsies used to look for cancer.” American Cancer Society. 30 July 2015. Retrieved from https://www.cancer.org/treatment/understanding-your-diagnosis/tests/testing-biopsy-and-cytology-specimens-for-cancer/biopsy-types.html
  4. Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
    [PubMed]
  5. C. F. Loughran and C. R. Keeling, “Seeding of tumour cells following breast biopsy: a literature review,” Br. J. Radiol. 84(1006), 869–874 (2011).
    [Crossref] [PubMed]
  6. K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J. Int. Soc. Prev. Community Dent. 4(1), 5–11 (2014).
    [Crossref] [PubMed]
  7. C. J. Cobb, “FNA or core needle biopsy? Why not both?” CAP Today107(11) (2007), www.captodayonline.com/Archives/pap_ngc/1107NGC_FNA.html .
  8. L. Wang, “Early Diagnosis of Breast Cancer,” Sensors (Basel) 17(7), 1572 (2017).
    [Crossref] [PubMed]
  9. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
    [Crossref] [PubMed]
  10. T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
    [Crossref] [PubMed]
  11. M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
    [Crossref] [PubMed]
  12. T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
    [PubMed]
  13. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
    [Crossref] [PubMed]
  14. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
    [Crossref] [PubMed]
  15. H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
    [Crossref] [PubMed]
  16. J. Wang, H. Li, G. Tian, Y. Deng, Q. Liu, and L. Fu, “Near-infrared probe-based confocal microendoscope for deep-tissue imaging,” Biomed. Opt. Express 9(10), 5011–5025 (2018).
    [Crossref] [PubMed]
  17. M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
    [Crossref] [PubMed]
  18. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-Optic Confocal Microscope Using a MEMS Scanner and Miniature Objective Lens,” Opt. Express 15(15), 9113–9122 (2007).
    [Crossref] [PubMed]
  19. C. Y. Lee and J. H. Han, “Elimination of Honeycomb Patterns in Fiber Bundle Imaging by a Superimposition Method,” Opt. Lett. 38(12), 2023–2025 (2013).
    [Crossref] [PubMed]
  20. E. R. Languirand and B. M. Cullum, “Large area super-resolution chemical imaging via rapid dithering of a nanoprobe,” Proc. SPIE 9487, 94870 (2015).
    [Crossref]
  21. Y. Chang, W. Lin, J. Cheng, and S. C. Chen, “Compact high-resolution endomicroscopy based on fiber bundles and image stitching,” Opt. Lett. 43(17), 4168–4171 (2018).
    [Crossref] [PubMed]
  22. K. Vyas, M. Hughes, B. G. Rosa, and G. Z. Yang, “Fiber bundle shifting endomicroscopy for high-resolution imaging,” Biomed. Opt. Express 9(10), 4649–4664 (2018).
    [Crossref] [PubMed]
  23. J. Shao, W. C. Liao, R. Liang, and K. Barnard, “Resolution enhancement for fiber bundle imaging using maximum a posteriori estimation,” Opt. Lett. 43(8), 1906–1909 (2018).
    [Crossref] [PubMed]
  24. D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
    [Crossref] [PubMed]
  25. N. Bedard and T. S. Tkaczyk, “Snapshot Spectrally Encoded Fluorescence Imaging through a Fiber Bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
    [Crossref] [PubMed]
  26. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
    [Crossref]
  27. M. Kyrish and T. S. Tkaczyk, “Achromatized Endomicroscope Objective for Optical Biopsy,” Biomed. Opt. Express 4(2), 287–297 (2013).
    [Crossref] [PubMed]
  28. L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, and L. Fu, “Five-Lens, Easy-to-Implement Miniature Objective for a Fluorescence Confocal Microendoscope,” Opt. Express 24(1), 473–484 (2016).
    [Crossref] [PubMed]
  29. N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
    [Crossref] [PubMed]
  30. P. Soille, Morphological Image Analysis: Principles and Applications (Springer, 1999)
  31. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  32. S. Rupp, C. Winter, and M. Elter, “Evaluation of spatial interpolation strategies for the removal of comb-structure in fiber-optic images,” 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3677–3680 (2009).
    [Crossref]

2018 (5)

2017 (1)

L. Wang, “Early Diagnosis of Breast Cancer,” Sensors (Basel) 17(7), 1572 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

E. R. Languirand and B. M. Cullum, “Large area super-resolution chemical imaging via rapid dithering of a nanoprobe,” Proc. SPIE 9487, 94870 (2015).
[Crossref]

2014 (1)

K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J. Int. Soc. Prev. Community Dent. 4(1), 5–11 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot Spectrally Encoded Fluorescence Imaging through a Fiber Bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

2011 (2)

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

C. F. Loughran and C. R. Keeling, “Seeding of tumour cells following breast biopsy: a literature review,” Br. J. Radiol. 84(1006), 869–874 (2011).
[Crossref] [PubMed]

2010 (1)

M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
[Crossref] [PubMed]

2009 (1)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

2008 (3)

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[Crossref] [PubMed]

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
[Crossref] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

2004 (1)

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

2001 (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

2000 (1)

Anandasabapathy, S.

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[Crossref] [PubMed]

Barnard, K.

Bedard, N.

N. Bedard and T. S. Tkaczyk, “Snapshot Spectrally Encoded Fluorescence Imaging through a Fiber Bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

Bubi, T. C.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Celli, J. P.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Chang, Y.

Chen, S. C.

Cheng, J.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Christenson, T.

Cobb, C. J.

C. J. Cobb, “FNA or core needle biopsy? Why not both?” CAP Today107(11) (2007), www.captodayonline.com/Archives/pap_ngc/1107NGC_FNA.html .

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cullum, B. M.

E. R. Languirand and B. M. Cullum, “Large area super-resolution chemical imaging via rapid dithering of a nanoprobe,” Proc. SPIE 9487, 94870 (2015).
[Crossref]

Deng, Y.

Descour, M. R.

Fienup, J. R.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Fu, L.

Gao, L.

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

Gillenwater, A. M.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

Girish, H. C.

K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J. Int. Soc. Prev. Community Dent. 4(1), 5–11 (2014).
[Crossref] [PubMed]

Gmitro, A. F.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Hagen, N.

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

Han, J. H.

Hasan, T.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Hughes, M.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Kayembe, M. K.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Keeling, C. R.

C. F. Loughran and C. R. Keeling, “Seeding of tumour cells following breast biopsy: a literature review,” Br. J. Radiol. 84(1006), 869–874 (2011).
[Crossref] [PubMed]

Kester, R.

M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
[Crossref] [PubMed]

Kester, R. T.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Kyrish, M.

M. Kyrish and T. S. Tkaczyk, “Achromatized Endomicroscope Objective for Optical Biopsy,” Biomed. Opt. Express 4(2), 287–297 (2013).
[Crossref] [PubMed]

M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
[Crossref] [PubMed]

Languirand, E. R.

E. R. Languirand and B. M. Cullum, “Large area super-resolution chemical imaging via rapid dithering of a nanoprobe,” Proc. SPIE 9487, 94870 (2015).
[Crossref]

Lee, C. Y.

Lee, D.

Li, H.

Li, J.

Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
[PubMed]

Li, X. R.

Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
[PubMed]

Liang, R.

Liao, W. C.

Lin, W.

Liu, Q.

Loughran, C. F.

C. F. Loughran and C. R. Keeling, “Seeding of tumour cells following breast biopsy: a literature review,” Br. J. Radiol. 84(1006), 869–874 (2011).
[Crossref] [PubMed]

Mai, Z.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Makhlouf, H.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Maru, D.

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[Crossref] [PubMed]

Mehta, A. D.

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Muldoon, T. J.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[Crossref] [PubMed]

Murgod, S.

K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J. Int. Soc. Prev. Community Dent. 4(1), 5–11 (2014).
[Crossref] [PubMed]

Pereira, S. P.

D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
[Crossref] [PubMed]

Pierce, M. C.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-Optic Confocal Microscope Using a MEMS Scanner and Miniature Objective Lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Quinn, M. K.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Ra, H.

Ramogola-Masire, D.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Ravì, D.

D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
[Crossref] [PubMed]

Richards-Kortum, R.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
[Crossref] [PubMed]

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[Crossref] [PubMed]

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
[Crossref] [PubMed]

H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-Optic Confocal Microscope Using a MEMS Scanner and Miniature Objective Lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

Rizvi, I.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Roblyer, D.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

Rosa, B. G.

Rouse, A. R.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
[Crossref] [PubMed]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Shakir, D. I.

D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
[Crossref] [PubMed]

Shao, J.

Shin, H. J.

Shyamala, K.

K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J. Int. Soc. Prev. Community Dent. 4(1), 5–11 (2014).
[Crossref] [PubMed]

Solgaard, O.

Spring, B. Q.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Stepanek, V. M.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

Szczotka, A. B.

D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
[Crossref] [PubMed]

Tanbakuchi, A. A.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Thurman, S. T.

Tian, G.

Tkaczyk, T.

M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
[Crossref] [PubMed]

Tkaczyk, T. S.

M. Kyrish and T. S. Tkaczyk, “Achromatized Endomicroscope Objective for Optical Biopsy,” Biomed. Opt. Express 4(2), 287–297 (2013).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot Spectrally Encoded Fluorescence Imaging through a Fiber Bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
[Crossref] [PubMed]

Udovich, J. A.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Vercauteren, T.

D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
[Crossref] [PubMed]

Vyas, K.

Wang, J.

Wang, L.

L. Wang, “Early Diagnosis of Breast Cancer,” Sensors (Basel) 17(7), 1572 (2017).
[Crossref] [PubMed]

Wei, L.

Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
[PubMed]

Williams, M. D.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

Yang, G. Z.

Yang, L.

Yuan, J.

Yun, S. H.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Zhang, Y. J.

Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
[PubMed]

Zheng, Y. Q.

Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
[PubMed]

Zhong, W.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Cancer (1)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In Vivo High-Resolution Fluorescence Microendoscopy for Ovarian Cancer Detection and Treatment Monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Br. J. Radiol. (1)

C. F. Loughran and C. R. Keeling, “Seeding of tumour cells following breast biopsy: a literature review,” Br. J. Radiol. 84(1006), 869–874 (2011).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber Optic in Vivo Imaging in the Mammalian Nervous System,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-Resolution Imaging in Barrett’s Esophagus: A Novel, Low-Cost Endoscopic Microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[Crossref] [PubMed]

Gland Surg. (1)

Y. J. Zhang, L. Wei, J. Li, Y. Q. Zheng, and X. R. Li, “Status quo and development trend of breast biopsy technology,” Gland Surg. 2(1), 15–24 (2013).
[PubMed]

Head Neck (1)

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive Imaging of Oral Neoplasia with a High-Resolution Fiber-Optic Microendoscope,” Head Neck 9999(9999), 1–8 (2011).
[PubMed]

Int. J. CARS (1)

D. Ravì, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction,” Int. J. CARS 13(6), 917–924 (2018).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

N. Bedard and T. S. Tkaczyk, “Snapshot Spectrally Encoded Fluorescence Imaging through a Fiber Bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

J. Int. Soc. Prev. Community Dent. (1)

K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J. Int. Soc. Prev. Community Dent. 4(1), 5–11 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Opt. Eng. (1)

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image Mapping Spectrometry: Calibration and Characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

PLoS One (1)

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Proc SPIE Int Soc Opt Eng (1)

M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving Spatial Resolution of a Fiber Bundle Optical Biopsy System,” Proc SPIE Int Soc Opt Eng 7558, 755807 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

E. R. Languirand and B. M. Cullum, “Large area super-resolution chemical imaging via rapid dithering of a nanoprobe,” Proc. SPIE 9487, 94870 (2015).
[Crossref]

Sensors (Basel) (1)

L. Wang, “Early Diagnosis of Breast Cancer,” Sensors (Basel) 17(7), 1572 (2017).
[Crossref] [PubMed]

Other (4)

C. J. Cobb, “FNA or core needle biopsy? Why not both?” CAP Today107(11) (2007), www.captodayonline.com/Archives/pap_ngc/1107NGC_FNA.html .

“Types of biopsies used to look for cancer.” American Cancer Society. 30 July 2015. Retrieved from https://www.cancer.org/treatment/understanding-your-diagnosis/tests/testing-biopsy-and-cytology-specimens-for-cancer/biopsy-types.html

S. Rupp, C. Winter, and M. Elter, “Evaluation of spatial interpolation strategies for the removal of comb-structure in fiber-optic images,” 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3677–3680 (2009).
[Crossref]

P. Soille, Morphological Image Analysis: Principles and Applications (Springer, 1999)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Optical layout of the objective with rays from the x-axis fields.
Fig. 2
Fig. 2 (a) Spot diagrams for the fields on the x-axis at 543 nm wavelength. (b) Spot diagrams for the fields on the y-axis at 543 nm wavelength.
Fig. 3
Fig. 3 (a) MTF plots for the fields on the x-axis at 543 nm wavelength. (b) MTF plots for the fields on the y-axis at 543 nm wavelength.
Fig. 4
Fig. 4 (a) Features that are circled red are spacing components that are embedded into a lens to ensure the proper distance between surfaces. (b) Features circled red ensure that two surfaces come in contact concentrically. (c) Assembly of all optical elements.
Fig. 5
Fig. 5 SolidWorks cutaway of the assembled miniature objective.
Fig. 6
Fig. 6 (a) Processing an optical element by using the SPDT machine. (b) Fabrication of the prism using the in-house polishing machine. (c) Components of the miniature objective placed on a U.S. penny for size comparison.
Fig. 7
Fig. 7 Optical setup used to evaluate the lateral resolution of the objective.
Fig. 8
Fig. 8 (a) USAF target image taken with a 10 nm bandpass filter centered at 515 nm, (b) 540 nm, and (c) 568 nm. All images have been contrast enhanced for visualization purposes.
Fig. 9
Fig. 9 Optical setup used to verify the spectral encoding concept with USAF resolution target.
Fig. 10
Fig. 10 Spectral encoding method results obtained with the setup shown in Fig. 9. (a) Reconstructed image using only the 543 nm spectral channel. (b) Reconstructed image using 21 spectral images. All images have been contrast enhanced for visualization purposes. The scale bars shown represent 20 microns.
Fig. 11
Fig. 11 Image of an Air Force Resolution target with a 40x objective in the IMS detection system. (a) Raw 543 nm channel image. (b) Reconstructed image using only the 543 nm spectral channel and line profile analysis results for the vertical features in group 8, elements 3 and 4. (c) Reconstructed image using 21 spectral images and line profile analysis result for the vertical features in group 9, element 1. All images have been contrast enhanced for visualization purposes. The scale bars in all figures represent 5 microns.
Fig. 12
Fig. 12 Optical setup used to verify the spectral encoding concept with oral cheek samples from a pig.
Fig. 13
Fig. 13 Spectral encoding method results obtained using porcine oral cheek samples. (a) Reconstructed image obtained using only the 543 nm spectral channel. (b) Reconstructed image using 21 spectral images. All images have been contrast enhanced for visualization purposes. The scale bars shown represent 20 microns.
Fig. 14
Fig. 14 Comparison between the tissue images obtained with a commercial microscope and the spectral encoding method. All images have been contrast enhanced for visualization purposes. The scale bar shown in Fig. 14(a) represents 50 microns while the scale bars shown in Fig. 14(b) and (c) represent 20 microns.

Tables (3)

Tables Icon

Table 1 Summary of optical parameters for the objective

Tables Icon

Table 2 Lens prescription for the miniature objective

Tables Icon

Table 3 Expected tolerances for the miniature objective

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r fg ( x 0 , y 0 )= u,v F( u,v ) G * ( u,v )exp[i2π( u x 0 M + v y 0 N )]

Metrics