Abstract

In this work, we quantify the mechanical properties of the extra-cellular matrix (ECM) in live zebrafish using Brillouin microscopy. Optimization of the imaging conditions and parameters, combined with careful spectral analysis, allows us to resolve the thin ECM and distinguish its Brillouin frequency shift, a proxy for mechanical properties, from the surrounding tissue. High-resolution mechanical mapping further enables the direct measurement of the thickness of the ECM label-free and in-vivo. We find the ECM to be ~500 nm thick, and in very good agreement with electron microscopy quantification. Our results open the door for future studies that aim to investigate the role of ECM mechanics for zebrafish morphogenesis and axis elongation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen
Biomed. Opt. Express 3(10) 2623-2635 (2012)

Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

Detection of proteoglycan loss from articular cartilage using Brillouin microscopy, with applications to osteoarthritis

Pei-Jung Wu, Maryam Imani Masouleh, Daniele Dini, Carl Paterson, Peter Török, Darryl R. Overby, and Irina V. Kabakova
Biomed. Opt. Express 10(5) 2457-2466 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
    [Crossref] [PubMed]
  2. D. J. Andrew and A. J. Ewald, “Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration,” Dev. Biol. 341(1), 34–55 (2010).
    [Crossref] [PubMed]
  3. J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
    [Crossref] [PubMed]
  4. O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
    [Crossref] [PubMed]
  5. K. Sugimura, P.-F. Lenne, and F. Graner, “Measuring forces and stresses in situ in living tissues,” Development 143(2), 186–196 (2016).
    [Crossref] [PubMed]
  6. M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).
  7. K. Guevorkian and J.-L. Maître, “Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo,” Methods Cell Biol. 139, 187–201 (2017).
    [PubMed]
  8. M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
    [Crossref] [PubMed]
  9. H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [Crossref] [PubMed]
  10. D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu. Rev. Biophys. 38(1), 301–326 (2009).
    [Crossref] [PubMed]
  11. A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
    [Crossref] [PubMed]
  12. F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
    [Crossref] [PubMed]
  13. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  14. F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
    [Crossref]
  15. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  16. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
    [Crossref] [PubMed]
  17. G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
    [Crossref] [PubMed]
  18. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  19. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  20. G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
    [Crossref] [PubMed]
  21. R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
    [Crossref] [PubMed]
  22. F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
    [Crossref] [PubMed]
  23. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  24. D. L. Stemple, “Structure and function of the notochord: an essential organ for chordate development,” Development 132(11), 2503–2512 (2005).
    [Crossref] [PubMed]
  25. D. S. Adams, R. Keller, and M. A. Koehl, “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis,” Development 110(1), 115–130 (1990).
    [PubMed]
  26. K. Ellis, B. D. Hoffman, and M. Bagnat, “The vacuole within: how cellular organization dictates notochord function,” Bioarchitecture 3(3), 64–68 (2013).
    [Crossref] [PubMed]
  27. M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
    [PubMed]
  28. S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
    [Crossref] [PubMed]
  29. J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
    [Crossref] [PubMed]
  30. J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
    [Crossref] [PubMed]
  31. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [Crossref] [PubMed]
  32. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [Crossref] [PubMed]
  33. E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
    [Crossref] [PubMed]
  34. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” Conf. Lasers Electro-Optics/International Quantum Electron. Conf. Photonic Appl. Syst. Technol. 40, 420–426 (2004).
    [Crossref]
  35. G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
    [Crossref]
  36. M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
    [Crossref] [PubMed]
  37. J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
    [Crossref] [PubMed]
  38. S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
    [Crossref] [PubMed]
  39. N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).
  40. S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
    [Crossref]
  41. K. Ellis, J. Bagwell, and M. Bagnat, “Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis,” J. Cell Biol. 200, 667–679 (2013).
    [Crossref]
  42. C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
    [Crossref] [PubMed]

2018 (5)

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

2017 (6)

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

K. Guevorkian and J.-L. Maître, “Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo,” Methods Cell Biol. 139, 187–201 (2017).
[PubMed]

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

2016 (3)

K. Sugimura, P.-F. Lenne, and F. Graner, “Measuring forces and stresses in situ in living tissues,” Development 143(2), 186–196 (2016).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

2015 (2)

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

2014 (3)

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

2013 (2)

K. Ellis, B. D. Hoffman, and M. Bagnat, “The vacuole within: how cellular organization dictates notochord function,” Bioarchitecture 3(3), 64–68 (2013).
[Crossref] [PubMed]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
[Crossref]

2012 (2)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

2011 (2)

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

2010 (3)

D. J. Andrew and A. J. Ewald, “Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration,” Dev. Biol. 341(1), 34–55 (2010).
[Crossref] [PubMed]

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

2009 (1)

D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu. Rev. Biophys. 38(1), 301–326 (2009).
[Crossref] [PubMed]

2008 (1)

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

2007 (4)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

2006 (2)

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

2005 (1)

D. L. Stemple, “Structure and function of the notochord: an essential organ for chordate development,” Development 132(11), 2503–2512 (2005).
[Crossref] [PubMed]

2004 (1)

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

2002 (1)

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

1990 (1)

D. S. Adams, R. Keller, and M. A. Koehl, “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis,” Development 110(1), 115–130 (1990).
[PubMed]

Abuhattum, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Adams, D. S.

D. S. Adams, R. Keller, and M. A. Koehl, “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis,” Development 110(1), 115–130 (1990).
[PubMed]

Akitake, C. M.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Alsteens, D.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Anderson, C.

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Andrew, D. J.

D. J. Andrew and A. J. Ewald, “Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration,” Dev. Biol. 341(1), 34–55 (2010).
[Crossref] [PubMed]

Antonacci, G.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
[Crossref]

Bagnat, M.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

K. Ellis, B. D. Hoffman, and M. Bagnat, “The vacuole within: how cellular organization dictates notochord function,” Bioarchitecture 3(3), 64–68 (2013).
[Crossref] [PubMed]

Bagwell, J.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Baier, H.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Bartlett, S. J.

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Besner, S.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

Bilder, D.

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

Bischof, A. G.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

Bork, P.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Campàs, O.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

Caponi, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Cardinali, G.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Carn, E. K.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

Chen, D. Y.

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

Chitnis, A. B.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Cojoc, G.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Comez, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Corezzi, S.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Corte, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Coutinho, P.

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Crest, J.

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

Crump, J. G.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Czarske, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Davison, J. M.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

de Turris, V.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Discher, D. E.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Diz-Muñoz, A.

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

Dowden, J.

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Dufrêne, Y. F.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Durdu, S.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Edginton, R. S.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Edrei, E.

Ellis, K.

K. Ellis, B. D. Hoffman, and M. Bagnat, “The vacuole within: how cellular organization dictates notochord function,” Bioarchitecture 3(3), 64–68 (2013).
[Crossref] [PubMed]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Emiliani, C.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Engler, A. J.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Ewald, A. J.

D. J. Andrew and A. J. Ewald, “Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration,” Dev. Biol. 341(1), 34–55 (2010).
[Crossref] [PubMed]

Feldman, B.

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Fioretto, D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Fläschner, G.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Fletcher, D. A.

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

Foreman, M. R.

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
[Crossref]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Gansner, J. M.

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Garcia, J.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Gardel, M. L.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Gather, M. C.

Gaub, B. M.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Gaub, H. E.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Gerber, C.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Giammona, J.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

Gilmour, D.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Gitlin, J. D.

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Goll, M. G.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Gosse, N.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Graner, F.

K. Sugimura, P.-F. Lenne, and F. Graner, “Measuring forces and stresses in situ in living tissues,” Development 143(2), 186–196 (2016).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Green, E.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Grotmol, S.

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

Guck, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Guevorkian, K.

K. Guevorkian and J.-L. Maître, “Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo,” Methods Cell Biol. 139, 187–201 (2017).
[PubMed]

Gustafson, H. J.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

Halpern, M. E.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Hasso, S.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

He, L.

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Hirst, E. M. A.

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Hockenbery, Z. M.

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Hoffman, B. D.

K. Ellis, B. D. Hoffman, and M. Bagnat, “The vacuole within: how cellular organization dictates notochord function,” Bioarchitecture 3(3), 64–68 (2013).
[Crossref] [PubMed]

Hozumi, K.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Hultman, K. A.

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

Ingber, D. E.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

Ishitani, T.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Iskar, M.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Isoda, M.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Itoh, M.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Johnson, S. L.

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

Kalout, P.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Kawakami, K.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Kealhofer, D. A.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Keller, R.

D. S. Adams, R. Keller, and M. A. Koehl, “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis,” Development 110(1), 115–130 (1990).
[PubMed]

Kelsh, R. N.

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Keynes, R.

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

Kim, K.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Koehl, M. A.

D. S. Adams, R. Keller, and M. A. Koehl, “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis,” Development 110(1), 115–130 (1990).
[PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Krieg, M.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Krossøy, C.

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

Kryvi, H.

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

Kunze, A.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Leach, S. D.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Lenne, P.-F.

K. Sugimura, P.-F. Lenne, and F. Graner, “Measuring forces and stresses in situ in living tissues,” Development 143(2), 186–196 (2016).
[Crossref] [PubMed]

Levic, D. S.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Liu, K.-K.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Liu, X.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Locasale, J. W.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Lucio, A. A.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Maas, R.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

MacKintosh, F. C.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Madami, M.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Mahadevan, L.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Maître, J.-L.

K. Guevorkian and J.-L. Maître, “Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo,” Methods Cell Biol. 139, 187–201 (2017).
[PubMed]

Mammoto, T.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

Matsudaira, P.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Matsumoto, K.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Matsuo, H.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

Mendelsohn, B. A.

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

Miller, S. E.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Mizoguchi, T.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Möckel, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Möllmert, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Mongera, A.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Morita, R.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Morresi, A.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Müller, D. J.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Müller, P.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nixon, S. J.

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

Njaine, B.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Nordvik, K.

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

Norman, J.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

O’Connell, D.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

Oorschot, V. M. J.

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

Palombo, F.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Paolantoni, M.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Parsons, M. J.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Parton, R. G.

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
[Crossref]

Pineda, R.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Pollard, S. M.

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Revenu, C.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Rhee, J. M.

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

Roos, W. H.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Rosa, A.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Roscini, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Rowghanian, P.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Ruocco, G.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Sagini, K.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sandercock, J. R.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Sassi, P.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Saúde, L.

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Scarcelli, G.

E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Scarponi, F.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Schieber, N.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Schieber, N. L.

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

Schlüßler, R.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Schwab, Y.

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Sen, S.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Serra, M. D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

Serwane, F.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Shelton, E.

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

Shin, J. H.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Sperling, R. A.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

Stainier, D. Y. R.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Stemple, D. L.

D. L. Stemple, “Structure and function of the notochord: an essential organ for chordate development,” Development 132(11), 2503–2512 (2005).
[Crossref] [PubMed]

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

Stone, N.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Sugimura, K.

K. Sugimura, P.-F. Lenne, and F. Graner, “Measuring forces and stresses in situ in living tissues,” Development 143(2), 186–196 (2016).
[Crossref] [PubMed]

Sweeney, H. L.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Török, P.

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
[Crossref]

Totland, G. K.

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Webb, R. I.

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

Weitz, D. A.

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Wilson, D.

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Winlove, C. P.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Wirtz, D.

D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu. Rev. Biophys. 38(1), 301–326 (2009).
[Crossref] [PubMed]

Wopat, S.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Wuite, G. J. L.

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Yamamoto, M.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Yonemura, S.

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zimmermann, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Annu. Rev. Biophys. (1)

D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu. Rev. Biophys. 38(1), 301–326 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 221105 (2013).
[Crossref]

Bioarchitecture (1)

K. Ellis, B. D. Hoffman, and M. Bagnat, “The vacuole within: how cellular organization dictates notochord function,” Bioarchitecture 3(3), 64–68 (2013).
[Crossref] [PubMed]

Biophys. J. (2)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Cell (1)

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Commun Biol (1)

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Curr. Biol. (1)

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic, S. Wopat, S. E. Miller, X. Liu, J. W. Locasale, D. Y. R. Stainier, and M. Bagnat, “Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord,” Curr. Biol. 27(13), 1982–1989 (2017).
[Crossref] [PubMed]

Dev. Biol. (3)

J. M. Gansner, B. A. Mendelsohn, K. A. Hultman, S. L. Johnson, and J. D. Gitlin, “Essential role of lysyl oxidases in notochord development,” Dev. Biol. 307(2), 202–213 (2007).
[Crossref] [PubMed]

J. M. Davison, C. M. Akitake, M. G. Goll, J. M. Rhee, N. Gosse, H. Baier, M. E. Halpern, S. D. Leach, and M. J. Parsons, “Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish,” Dev. Biol. 304(2), 811–824 (2007).
[Crossref] [PubMed]

D. J. Andrew and A. J. Ewald, “Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration,” Dev. Biol. 341(1), 34–55 (2010).
[Crossref] [PubMed]

Development (5)

K. Sugimura, P.-F. Lenne, and F. Graner, “Measuring forces and stresses in situ in living tissues,” Development 143(2), 186–196 (2016).
[Crossref] [PubMed]

M. Yamamoto, R. Morita, T. Mizoguchi, H. Matsuo, M. Isoda, T. Ishitani, A. B. Chitnis, K. Matsumoto, J. G. Crump, K. Hozumi, S. Yonemura, K. Kawakami, and M. Itoh, “Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions,” Development 137(15), 2527–2537 (2010).
[Crossref] [PubMed]

M. J. Parsons, S. M. Pollard, L. Saúde, B. Feldman, P. Coutinho, E. M. A. Hirst, and D. L. Stemple, “Zebrafish mutants identify an essential role for laminins in notochord formation,” Development 129(13), 3137–3146 (2002).
[PubMed]

D. L. Stemple, “Structure and function of the notochord: an essential organ for chordate development,” Development 132(11), 2503–2512 (2005).
[Crossref] [PubMed]

D. S. Adams, R. Keller, and M. A. Koehl, “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis,” Development 110(1), 115–130 (1990).
[PubMed]

eLife (1)

J. Crest, A. Diz-Muñoz, D. Y. Chen, D. A. Fletcher, and D. Bilder, “Organ sculpting by patterned extracellular matrix stiffness,” eLife 6, 1–16 (2017).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

J. Anat. (1)

S. Grotmol, H. Kryvi, R. Keynes, C. Krossøy, K. Nordvik, and G. K. Totland, “Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?” J. Anat. 209(3), 339–357 (2006).
[Crossref] [PubMed]

J. R. Soc. Interface (2)

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

JAMA Ophthalmol. (1)

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

Light Sci. Appl. (1)

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques,” Light Sci. Appl. 7(2), e17139 (2018).
[Crossref]

Meth. Cell Biol (1)

N. L. Schieber, S. J. Nixon, R. I. Webb, V. M. J. Oorschot, and R. G. Parton, “Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo,” Meth. Cell Biol.  96, 425–442 (2010).

Methods Cell Biol. (1)

K. Guevorkian and J.-L. Maître, “Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo,” Methods Cell Biol. 139, 187–201 (2017).
[PubMed]

Mol. Biosyst. (1)

C. Anderson, S. J. Bartlett, J. M. Gansner, D. Wilson, L. He, J. D. Gitlin, R. N. Kelsh, and J. Dowden, “Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis,” Mol. Biosyst. 3(1), 51–59 (2007).
[Crossref] [PubMed]

Nat. Methods (3)

O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber, “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat. Methods 11(2), 183–189 (2014).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs, “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods 14(2), 181–186 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Nat. Rev. Phys. (1)

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, and D. J. Müller, “Atomic force microscopy-based mechanobiology,” Nat. Rev. Phys. 1, 41 (2018).

Nature (2)

A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, “A fluid-to-solid jamming transition underlies vertebrate body axis elongation,” Nature 561(7723), 401–405 (2018).
[Crossref] [PubMed]

S. Durdu, M. Iskar, C. Revenu, N. Schieber, A. Kunze, P. Bork, Y. Schwab, and D. Gilmour, “Luminal signalling links cell communication to tissue architecture during organogenesis,” Nature 515(7525), 120–124 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. X (1)

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Sci. Rep. (1)

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Science (1)

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[Crossref] [PubMed]

Other (2)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” Conf. Lasers Electro-Optics/International Quantum Electron. Conf. Photonic Appl. Syst. Technol. 40, 420–426 (2004).
[Crossref]

K. Ellis, J. Bagwell, and M. Bagnat, “Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis,” J. Cell Biol. 200, 667–679 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Characterization of the zebrafish notochord at 3 days post fertilization (dpf). (A) Schematic of the zebrafish tail at 3 dpf. Lateral (top) and transverse (bottom) views. (B) Bright field with overlapping fluorescence of a Tg(col9a2:GFPCaaX) zebrafish embryo at 3 dpf with GFP fluorescence from sheath cells. (C-D) Maximum intensity projection of the notochord in triple transgenic Tg(col9a2:GFPCaaX); SAGFF214A; Tg(UAS-E1b:NfsB-mCherry) zebrafish embryo at 3 dpf. Sheath cells (C) or simultaneously sheath and vacuolated cells (D) can be observed. Scale bars, 500 μm in (B), 20 μm in (C and D). ECM, extracellular matrix.
Fig. 2
Fig. 2 Brillouin microscope setup and characterization. (A) Schematic of the dual-stage VIPA based imaging setup. PBS – polarizing beamsplitter. (B) Experimentally recorded PSF width as a function of effective objective NA (linear-log scale). (C) Brillouin shift precision, obtained from 440 individual measurement of water under the same conditions used for in-vivo imaging (8.3 mW, 180 ms camera integration time). (D) Recorded Brillouin shift of water as a function of effective objective NA.
Fig. 3
Fig. 3 (A-B) Low magnification TEM of transverse notochord after side (A) and dorso-ventral (B) cuts of a Tg(col9a2:GFPCaaX) zebrafish embryo at 3 dpf and ~200-250 µm anterior from the posterior end of the notochord. (C-D) High magnification TEM of transverse view ECM (between white arrows) after side (C) and dorso-ventral (D) cuts. (E) Quantification of ECM thickness in left-right (LR) and dorso-ventral (DV) regions of 3 embryos. Scale bars, 5 μm in (A and B) and 250 nm in (C and D).
Fig. 4
Fig. 4 High-resolution mechanical imaging of zebrafish notochord ECM in-vivo. Brillouin shift maps were acquired in the middle between the left-right animal’s side (posterior, top; anterior, bottom). (A) Confocal image of sheath cells (GFP) as well as corresponding coarse-grained overview Brillouin image in (B) recorded with 1 µm step size at 3 days post fertilization (dpf) centred ~500 µm anterior from the posterior end of the notochord. (C) Brillouin shift map at 3 dpf centred ~250 µm from the posterior end (1 µm step size). (D) High-resolution Brillouin map of boxed area denoted in (C) with a step size of 0.1 µm. (E) Brillouin spectra recorded at discrete positions across the ECM (boxed area in (D)). Double-peak fitting distinguishes two Brillouin shifts of the ECM (orange and blue). Here, the fitting parameters were seeded from the parameters obtained from the fit to the pixel with highest ECM peak contribution and then subsequently constraining the ECM peak around ± 0.7 GHz when analyzing the surrounding pixels in order to prevent artefacts. We note that the observed variability in ECM peak shift is much lower than this fitting constraint. Brillouin shift map for the “high-shift” peak (F) and for the “low-shift” peak (G) – here pixels without a second peak are removed. A spatial map of the ratio of the spectral contributions is plotted in (H). (I) Line plots of ECM contribution to total spectrum across the ECM in (H), centred by their respective maximum. The represented curves are the result of the fitting with the convolution of the measured PSF (Gaussian) and ECM (box function - as shown in the inset). Black line denotes average of individual line plots. Brillouin images were obtained with a 0.85 NA objective and using 8.3 mW of laser power and 0.25 s of exposure time per pixel. w, water; m, muscle; sh, sheath cell; vac, vacuole; ECM, extracellular matrix; d, dorsal; v, ventral. Scale bars, 20 μm in (A,B), 5 μm in (C), 1 μm in (D,F,G,H).
Fig. 5
Fig. 5 Axial cross-section of zebrafish notochord mechanics. The effect of objective NA on the Brillouin map and contrast of the ECM is shown for low (0.34), medium (0.85), medium (0.85) of 45-degree rotated sample and high (1.28) effective NA in A-D, E-H, I-L and M-P respectively. In traditional single-peak fit Brillouin shift maps the ECM displays poor visibility (A,E,I,M). Dual-peak analysis and plotting the spectral ratios does improve contrast (B,F,J,N). (C,G,K,O) Zoom-ins. (D,H,L,P) Spectra of pixels with the highest contrast in (C,G,K,O), respectively. (Q) Illustration showing the cross-section of the notochord (left) as well as the overlap of the PSF with the ECM when measuring on the lateral (middle) and dorso-ventral (right) side, respectively. Brillouin images were obtained using 8.3 mW of laser power and 0.25 s of exposure time per pixel. Step size: 0.5 µm. d, dorsal; v, ventral. Scale bars, 10 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

υ B = 2n λ 0 Vsin( θ 2 ),

Metrics