Abstract

Brillouin spectroscopy is an emerging analytical tool in biomedical and biophysical sciences. It probes viscoelasticity through the propagation of thermally induced acoustic waves at gigahertz frequencies. Brillouin light scattering (BLS) measurements have traditionally been performed using multipass Fabry-Pérot interferometers, which have high contrast and resolution, however, as they are scanning spectrometers they often require long acquisition times in poorly scattering media. In the last decade, a new concept of Brillouin spectrometer has emerged, making use of highly angle-dispersive virtually imaged phase array (VIPA) etalons, which enable fast acquisition times for minimally turbid materials, when high contrast is not imperative. The ability to acquire Brillouin spectra rapidly, together with long term system stability, make this system a viable candidate for use in biomedical applications, especially to probe live cells and tissues. While various methods are being developed to improve system contrast and speed, little work has been published discussing the details of imaging data analysis and spectral processing. Here we present a method that we developed for the automated retrieval of Brillouin line shape parameters from imaging data sets acquired with a dual-stage VIPA Brillouin microscope. We applied this method for the first time to BLS measurements of collagen gelatin hydrogels at different hydration levels and cross-linker concentrations. This work demonstrates that it is possible to obtain the relevant information from Brillouin spectra using software for real-time high-accuracy analysis.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy

Carlo Bevilacqua, Héctor Sánchez-Iranzo, Dmitry Richter, Alba Diz-Muñoz, and Robert Prevedel
Biomed. Opt. Express 10(3) 1420-1431 (2019)

Etalon filters for Brillouin microscopy of highly scattering tissues

Peng Shao, Sebastien Besner, Jitao Zhang, Giuliano Scarcelli, and Seok-Hyun Yun
Opt. Express 24(19) 22232-22238 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. 17, 88–122 (1922).
    [Crossref]
  2. B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley, 1976).
  3. L. Comez, C. Masciovecchio, G. Monaco, and D. Fioretto, “Chapter One - Progress in liquid and glass physics by Brillouin scattering spectroscopy,” in Solid State Physics, E. C. Robert and L. S. Robert Eds. (Academic Press, 2012), 1–77.
  4. F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
    [Crossref] [PubMed]
  5. R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
    [Crossref] [PubMed]
  6. R. S. Edginton, E. M. Green, C. P. Winlove, D. Fioretto, and F. Palombo, “Dual scale biomechanics of extracellular matrix proteins probed by Brillouin scattering and quasistatic tensile testing,” SPIE BiOS 10504 (2018).
  7. S. Varma, J. P. Orgel, and J. D. Schieber, “Nanomechanics of type I collagen,” Biophys. J. 111(1), 50–56 (2016).
    [Crossref] [PubMed]
  8. F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
    [Crossref]
  9. I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
    [Crossref]
  10. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [Crossref] [PubMed]
  11. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  12. F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
    [Crossref] [PubMed]
  13. F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
    [Crossref] [PubMed]
  14. S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
    [Crossref] [PubMed]
  15. F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
    [Crossref] [PubMed]
  16. M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Annu. Rev. Biochem. 78(1), 929–958 (2009).
    [Crossref] [PubMed]
  17. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  18. K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
    [Crossref] [PubMed]
  19. P. Zhao and J. J. Vanderwal, “Brillouin scattering study of gelatin gel,” Polym. Gels Netw. 5(1), 23–36 (1997).
    [Crossref]

2018 (1)

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

2017 (2)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

2016 (5)

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

S. Varma, J. P. Orgel, and J. D. Schieber, “Nanomechanics of type I collagen,” Biophys. J. 111(1), 50–56 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

2012 (1)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

2009 (1)

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Annu. Rev. Biochem. 78(1), 929–958 (2009).
[Crossref] [PubMed]

2007 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

1997 (1)

P. Zhao and J. J. Vanderwal, “Brillouin scattering study of gelatin gel,” Polym. Gels Netw. 5(1), 23–36 (1997).
[Crossref]

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. 17, 88–122 (1922).
[Crossref]

Barr, H.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Berghaus, K.

Bilenca, A.

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

Borri, P.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. 17, 88–122 (1922).
[Crossref]

Caponi, S.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Cardinali, G.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Comez, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Corezzi, S.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Corte, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

David, A.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Edginton, R. S.

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Emiliani, C.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Fioretto, D.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Green, E.

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Langbein, W.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Madami, M.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Masia, F.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

Mattana, S.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

Morresi, A.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Nallala, J.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Orgel, J. P.

S. Varma, J. P. Orgel, and J. D. Schieber, “Nanomechanics of type I collagen,” Biophys. J. 111(1), 50–56 (2016).
[Crossref] [PubMed]

Palombo, F.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Paolantoni, M.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Pineda, R.

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

Raines, R. T.

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Annu. Rev. Biochem. 78(1), 929–958 (2009).
[Crossref] [PubMed]

Remer, I.

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

Roscini, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sandercock, J. R.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Sassi, P.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Scarcelli, G.

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Scarponi, F.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Schieber, J. D.

S. Varma, J. P. Orgel, and J. D. Schieber, “Nanomechanics of type I collagen,” Biophys. J. 111(1), 50–56 (2016).
[Crossref] [PubMed]

Shoulders, M. D.

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Annu. Rev. Biochem. 78(1), 929–958 (2009).
[Crossref] [PubMed]

Stone, N.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Tamagnini, F.

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

Urbanelli, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Vanderwal, J. J.

P. Zhao and J. J. Vanderwal, “Brillouin scattering study of gelatin gel,” Polym. Gels Netw. 5(1), 23–36 (1997).
[Crossref]

Varma, S.

S. Varma, J. P. Orgel, and J. D. Schieber, “Nanomechanics of type I collagen,” Biophys. J. 111(1), 50–56 (2016).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Winlove, C. P.

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Yun, S. H.

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zhao, P.

P. Zhao and J. J. Vanderwal, “Brillouin scattering study of gelatin gel,” Polym. Gels Netw. 5(1), 23–36 (1997).
[Crossref]

Analyst (Lond.) (2)

F. Palombo, F. Masia, S. Mattana, F. Tamagnini, P. Borri, W. Langbein, and D. Fioretto, “Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains,” Analyst (Lond.) 143(24), 6095–6102 (2018).
[Crossref] [PubMed]

F. Palombo, M. Madami, N. Stone, and D. Fioretto, “Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy,” Analyst (Lond.) 139(4), 729–733 (2014).
[Crossref] [PubMed]

Ann. Phys. (1)

L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. 17, 88–122 (1922).
[Crossref]

Annu. Rev. Biochem. (1)

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Annu. Rev. Biochem. 78(1), 929–958 (2009).
[Crossref] [PubMed]

APL Photonics (1)

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

Biophys. J. (1)

S. Varma, J. P. Orgel, and J. D. Schieber, “Nanomechanics of type I collagen,” Biophys. J. 111(1), 50–56 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 14 (2017).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

J. Vis. Exp. (1)

R. S. Edginton, S. Mattana, S. Caponi, D. Fioretto, E. Green, C. P. Winlove, and F. Palombo, “Preparation of extracellular matrix protein fibers for Brillouin spectroscopy,” J. Vis. Exp. 115(115), e54648 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. X (1)

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Polym. Gels Netw. (1)

P. Zhao and J. J. Vanderwal, “Brillouin scattering study of gelatin gel,” Polym. Gels Netw. 5(1), 23–36 (1997).
[Crossref]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Other (3)

R. S. Edginton, E. M. Green, C. P. Winlove, D. Fioretto, and F. Palombo, “Dual scale biomechanics of extracellular matrix proteins probed by Brillouin scattering and quasistatic tensile testing,” SPIE BiOS 10504 (2018).

B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley, 1976).

L. Comez, C. Masciovecchio, G. Monaco, and D. Fioretto, “Chapter One - Progress in liquid and glass physics by Brillouin scattering spectroscopy,” in Solid State Physics, E. C. Robert and L. S. Robert Eds. (Academic Press, 2012), 1–77.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the VIPA Brillouin microscope system. Acronyms denote SH: shutter; FW: neutral density filter wheel; BX: 10x beam expander; M1–6: mirrors; NPBS: (10:90) non-polarising beam splitter; C1–2: cylindrical lenses; S1–5: spherical lenses; MK1–2: optical masks.
Fig. 2
Fig. 2 Block diagram showing the stages of the data analysis protocol. The data analysis can be broken down into four major parts (coloured boxes). WCoG denotes weighted centre of gravity.
Fig. 3
Fig. 3 (a) A typical sCMOS output of the spectrometer, showing the Brillouin spectrum of water acquired with a 60x water-immersion objective and 2s exposure time. (b) Corresponding colour image. (c) Contrast-enhanced image.
Fig. 4
Fig. 4 (a) A typical sCMOS output of the spectrometer, showing the Brillouin spectrum of methanol acquired with a 60x water-immersion objective and 2s exposure time. (b) Corresponding denoised thresholded image. (c) Final colour image. Rayleigh peaks are denoted by blue crosses at the corners of the image. (d) Colour image with selected spectral data. (e) Spectral data rotated (by 45° anticlockwise) so that the spectral axis coincides with the x-axis. (f) Brillouin spectrum in which the intensity for each channel corresponds to the maximum intensity recorded by the pixels in each column of the image.
Fig. 5
Fig. 5 Brillouin spectrum of methanol and water acquired with a 60x water-immersion objective and 2s exposure time. Dashed lines denote lines of average intensity.
Fig. 6
Fig. 6 Fit results for (left) Stokes and (right) anti-Stokes parts of the Brillouin spectrum of methanol and water. Lorentzian and Gaussian functions were used resulting in R2 = 0.996 and 0.982 (methanol), 0.994 and 0.989 (water), respectively. Note that negative frequency shifts have been converted to positive shifts.
Fig. 7
Fig. 7 Brillouin spectrum of collagen gelatins with 6 and 12 wt. % collagen acquired with a 60x water-immersion objective, and 3s and 2s exposure time, respectively.
Fig. 8
Fig. 8 Plot of frequency shift vs. (a) collagen concentration and (b) formalin concentration at 10 wt. % collagen concentration for the gelatin hydrogels.

Tables (1)

Tables Icon

Table 1 Brillouin frequency shift and linewidth for methanol and water. a Data from ref [18]. b Data derived using a high-resolution tandem Fabry-Pérot interferometer [4].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I'=f( I o )={ 0, I 0 <μασ 1, I 0 >μ+ασ I 0 μ+ασ 2ασ , otherwise
ν B = FSRmin( i R 0 , R 1 i ) R 1 R 0

Metrics