Abstract

This paper describes how to take advantage of the replacement of an intensity camera with a polarization camera in a standard differential interference contrast (DIC) microscope. Using a polarization camera enables snapshot quantitative phase analysis so that real-time imaging of living transparent tissues become possible. Using our method, we quantify the phase measurement accuracy using a phantom consisting of glass beads embedded in lacquer. In order to demonstrate these advantages, we image the pumping heart and blood flow in a living medaka egg.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Nathan Hagen, Shuhei Shibata, Wataru Takano, Masaru Matsuda, and Yukitoshi Otani, "Video-rate quantitative phase analysis by a DIC microscope using a polarization camera: errata," Biomed. Opt. Express 10, 2967-2968 (2019)
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-10-6-2967

OSA Recommended Articles
Wafer defect detection by a polarization-insensitive external differential interference contrast module

Amit Nativ, Haim Feldman, and Natan T. Shaked
Appl. Opt. 57(13) 3534-3538 (2018)

Gradient field microscopy of unstained specimens

Taewoo Kim, Shamira Sridharan, and Gabriel Popescu
Opt. Express 20(6) 6737-6745 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S (1955).
  2. A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282(16), 3223–3230 (2009).
    [Crossref]
  3. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
    [Crossref] [PubMed]
  4. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
    [Crossref] [PubMed]
  5. D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” JOSA 69(2), 357–366 (1979).
    [Crossref]
  6. J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments,” Appl. Opt. 19(17), 2998–3009 (1980).
    [Crossref] [PubMed]
  7. J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques,” Appl. Opt. 20(15), 2665–2669 (1981).
    [Crossref] [PubMed]
  8. H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
    [Crossref]
  9. H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260(1), 117–126 (2006).
    [Crossref]
  10. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  11. S. Kawakami, T. Kawashima, Y. Inoue, Y. Homma, T. Sato, S. Ota, S. Nagashima, and T. Aoki, “Polarization imaging device utilizing photonic crystal polarizer,” The Transactions of the Institute of Electronics Information and Communication Engineers. C, J90–C17–24, (2007) (Japanese).
  12. Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
    [Crossref]
  13. L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48(7), 1347–1357 (2009).
    [Crossref] [PubMed]
  14. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A Math. Phys. Sci. 217, 408–432 (1953).
  15. R. S. Sirohi and G. S. Bhatnagar, “Effect of partial coherence on the resolution of a microscope,” Opt. Acta (Lond.) 17(11), 839–842 (1970).
    [Crossref]
  16. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
    [Crossref] [PubMed]
  17. T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
    [Crossref] [PubMed]
  18. While the camera itself is capable of capturing images at frame rates of up to 100 Hz, the camera interface software available to us for this experiment could only run at frame rates up to 20 Hz.

2018 (1)

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

2017 (1)

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2008 (1)

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

2006 (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260(1), 117–126 (2006).
[Crossref]

2004 (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

1996 (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

1981 (1)

1980 (1)

1979 (1)

D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” JOSA 69(2), 357–366 (1979).
[Crossref]

1970 (1)

R. S. Sirohi and G. S. Bhatnagar, “Effect of partial coherence on the resolution of a microscope,” Opt. Acta (Lond.) 17(11), 839–842 (1970).
[Crossref]

1955 (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S (1955).

1953 (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A Math. Phys. Sci. 217, 408–432 (1953).

Akiyama, K.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Aoki, T.

Arakawa, S.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Arikkath, J.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

Best-Popescu, C.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Bhatnagar, G. S.

R. S. Sirohi and G. S. Bhatnagar, “Effect of partial coherence on the resolution of a microscope,” Opt. Acta (Lond.) 17(11), 839–842 (1970).
[Crossref]

Cogswell, C. J.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

Do, M. N.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Ezaki, T.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Fabre, L.

Gordon, R. L.

Gruev, V.

Hartman, J. S.

Hirasawa, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Hopkins, H. H.

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A Math. Phys. Sci. 217, 408–432 (1953).

Inoue, Y.

Ishiwata, H.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282(16), 3223–3230 (2009).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260(1), 117–126 (2006).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Itoh, M.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282(16), 3223–3230 (2009).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260(1), 117–126 (2006).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Kandel, M.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Kawakami, S.

King, S. V.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

Komori, K.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Kondo, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

LaCasse, C. F.

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

Lessor, D. L.

Libertun, A.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

Maruyama, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Matoba, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Murayama, J.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Nakamura, M.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Nguyen, T. H.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Noguchi, A.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282(16), 3223–3230 (2009).
[Crossref]

Nomarski, G.

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S (1955).

Ohba, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Oike, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Perkins, R.

Piestun, R.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

Popescu, G.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Preza, C.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

Ratliff, B. M.

Sato, S.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Shakir, H. M.

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Sheppard, C. J. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

Sirohi, R. S.

R. S. Sirohi and G. S. Bhatnagar, “Effect of partial coherence on the resolution of a microscope,” Opt. Acta (Lond.) 17(11), 839–842 (1970).
[Crossref]

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

Terada, T.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Tyo, J. S.

Uesaka, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Yamazaki, T.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

Yatagai, T.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282(16), 3223–3230 (2009).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260(1), 117–126 (2006).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

York, T.

Appl. Opt. (3)

IEEE Trans. Electron Dev. (1)

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, and T. Ezaki, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65(6), 2544–2551 (2018).
[Crossref]

J. Biomed. Opt. (1)

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[Crossref] [PubMed]

J. Phys. Radium (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S (1955).

JOSA (1)

D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” JOSA 69(2), 357–366 (1979).
[Crossref]

Opt. Acta (Lond.) (1)

R. S. Sirohi and G. S. Bhatnagar, “Effect of partial coherence on the resolution of a microscope,” Opt. Acta (Lond.) 17(11), 839–842 (1970).
[Crossref]

Opt. Commun. (2)

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282(16), 3223–3230 (2009).
[Crossref]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260(1), 117–126 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A Math. Phys. Sci. 217, 408–432 (1953).

Proc. SPIE (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Sci. Rep. (1)

T. H. Nguyen, M. Kandel, H. M. Shakir, C. Best-Popescu, J. Arikkath, M. N. Do, and G. Popescu, “Halo-free phase contrast microscopy,” Sci. Rep. 7(1), 44034 (2017).
[Crossref] [PubMed]

Other (2)

While the camera itself is capable of capturing images at frame rates of up to 100 Hz, the camera interface software available to us for this experiment could only run at frame rates up to 20 Hz.

S. Kawakami, T. Kawashima, Y. Inoue, Y. Homma, T. Sato, S. Ota, S. Nagashima, and T. Aoki, “Polarization imaging device utilizing photonic crystal polarizer,” The Transactions of the Institute of Electronics Information and Communication Engineers. C, J90–C17–24, (2007) (Japanese).

Supplementary Material (1)

NameDescription
» Visualization 1       This video is quantitative phase video of the pumping of a medaka heart.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simple model of a transmission microscope.
Fig. 2
Fig. 2 The optical setup of the DIC microscope using a polarization camera.
Fig. 3
Fig. 3 The flowchart for the Fourier-domain pixel interpolation method of the polarization camera image.
Fig. 4
Fig. 4 The DIC microscope using a polarization camera.
Fig. 5
Fig. 5 The reciprocal MTF(fx) of our DIC microscope. The red curves are for our 30 × objective lens (NA = 0.40), while the black curves are for our 20 × objective lens (NA = 0.40). The solid curve is the MTF at maximum aperture, while the dashed curve is the MTF at half aperture.
Fig. 6
Fig. 6 The measurement results of the glass beads (n1 = 1.56) embedded in lacquer (n2 = 1.54). We use an NA = 0.4 objective lens, (a), (c) and (e) are the differential phase results, while (b), (d), and (f) are the quantitative phase results. (c) and (d) are the enlarged images of red square of (a) and (b), respectively. (e) and (f) are cross-sections taken at the center of the glass beads (red dished lines of (c) and (d)). The black line of (f) is the calculated theoretical value.
Fig. 7
Fig. 7 A living medaka egg as sample for video-rate measurement.
Fig. 8
Fig. 8 Two frames from a quantitative phase video of the pumping of a medaka heart, captured at a 20 Hz frame rate [18]. (Visualization 1).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I(x)= R( f x , f x )O( f x ) O ( f x )exp{ 2πi( f x f x )x }d f x d f x ,
R( f x , f x )= Q(ξ)p(ξ+ f x ) p (ξ+ f x )dξ ,
P( 45 )=[ 2 0 0 2 ],MPA(± 45 )=[ ± 2 0 0 2 ], N 1 (Δ,ξ)=[ exp{ iπ(ξΔ+1)/2 } exp (iπξΔ/2 ) 0 0 ], N 2 (Δ,ξ)=[ exp (iπξΔ/2 ) exp (iπξΔ/2 ) 0 0 ].
R( f x , f x )= Q(ξ)Ap(ξ+ f x ) A p (ξ+ f x )dξ ,
A=MPA(± 45 ) N 1 (Δ,ξ) N 2 (Δ,ξ)P( 45 ).
o(x)=Cexp{ iϕ(x) }Cexp(i ϕ 0 ){ 1+iϕ(x)ϕ (x) 2 },
O( f x )=Cexp(i ϕ 0 ){ δ( f x )+iΦ( f x ) 1 2 Φ( f x ) Φ * ( f x ) }.
I(x,± 45 )= C 2 [ M(0) cos(π f x Δ)M( f x )Φ( f x ) Φ * ( f x )exp(2πi f x x)d f x + { 1+sin(2π f x Δ) } m 0 ( f x )Φ( f x ) Φ * ( f x )d f x }        (a) ±2i sin(π f x Δ) M( f x )Φ( f x )exp(2πi f x x)d f x (b) ± cos(2π f x Δ) m d ( f x )Φ( f x ) Φ * ( f x )exp(4πi f x x)d f x , (c)
M(0)= Q(ξ)p(ξ) p * (ξ)dξ,M( f x )= Q(ξ)p(ξ+ f x ) p * (ξ)dξ, m 0 ( f x )= Q(ξ)p(ξ+ f x ) p * (ξ+ f x )dξ, m d ( f x )= Q(ξ)p(ξ+ f x ) p * (ξ f x )dξ.
I(x,± 45 )= C 2 [ M(0)±2i sin(π f x Δ) M( f x )Φ( f x )exp(2πi f x x)d f x ].
I(x,+ 45 )I(x, 45 ) I(x,+ 45 )+I(x, 45 ) = 2i M(0) sin(π f x Δ) M( f x )Φ( f x )exp(2πi f x x)d f x =2i MTF( f x ) Φ( f x )exp(2πi f x x)d f x ,
MTF( f x )= sin(π f x Δ)M( f x ) M(0)
ϕ(x)= 1 2i 1 [ 1 MTF( f x ) { I(x,+ 45 )I(x, 45 ) I(x,+ 45 )+I(x, 45 ) } ],
s 0 (x,y)=I(x,y, 0 )+I(x,y, 90 )=I(x,y, 45 )+I(x,y, 45 ),
s 1 (x,y)=I(x,y, 0 )I(x,y, 90 ),
s 2 (x,y)=I(x,y, 45 )I(x,y, 45 ),
ϕ(x,y)= 1 2i 1 [ 1 MTF( f x ) { s 2 (x,y) s 0 (x,y) } ].

Metrics