Abstract

Because of its similar genetic makeup with humans, zebrafish are an available and well-established osteoporosis model in vivo for anti-osteoporosis drug development as well as the drug safety-evaluation process. However, few optical imaging methods could effectively visualize the bone of adult zebrafish due to their limited penetration depth. In this paper, in vivo high-resolution and long-term characterization of a prednisolone-induced osteoporotic zebrafish model was achieved with spectral-domain optical coherence tomography (SD-OCT). The capability of three-dimensional SD-OCT imaging was also demonstrated in this study. With SD-OCT images, we could non-destructively monitor the deforming process of adult zebrafish skull from several directions at any time. There is good correlation and agreement between SD-OCT and histology. Valuable phenomenon such as bone defects could be quantitatively evaluated using the SD-OCT images at different time points during a period of 21 days.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography

Fanny Moses Gladys, Masaru Matsuda, Yiheng Lim, Boaz Jessie Jackin, Takuto Imai, Yukitoshi Otani, Toyohiko Yatagai, and Barry Cense
Biomed. Opt. Express 6(2) 297-308 (2015)

Characterization of multiphoton microscopy in the bone marrow following intravital laser osteotomy

Raphaël Turcotte, Clemens Alt, Luke J. Mortensen, and Charles P. Lin
Biomed. Opt. Express 5(10) 3578-3588 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
    [Crossref] [PubMed]
  2. O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
    [Crossref] [PubMed]
  3. J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
    [PubMed]
  4. H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
    [Crossref] [PubMed]
  5. S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
    [Crossref] [PubMed]
  6. L. A. Fitzpatrick, “Secondary causes of osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
    [Crossref] [PubMed]
  7. B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” J. Bone Miner. Res. 13(5), 763–773 (1998).
    [Crossref] [PubMed]
  8. K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
    [Crossref] [PubMed]
  9. P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends Mol. Med. 18(6), 348–359 (2012).
    [Crossref] [PubMed]
  10. R. S. Weinstein, “Glucocorticoid-induced bone disease,” N. Engl. J. Med. 365(1), 62–70 (2011).
    [Crossref] [PubMed]
  11. P. Goldsmith, “Zebrafish as a pharmacological tool: the how, why and when,” Curr. Opin. Pharmacol. 4(5), 504–512 (2004).
    [Crossref] [PubMed]
  12. S. Pasqualetti, G. Banfi, and M. Mariotti, “The zebrafish scale as model to study the bone mineralization process,” J. Mol. Histol. 43(5), 589–595 (2012).
    [Crossref] [PubMed]
  13. G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007).
    [Crossref] [PubMed]
  14. G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet. 8(5), 353–367 (2007).
    [Crossref] [PubMed]
  15. L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
    [Crossref] [PubMed]
  16. J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
    [Crossref] [PubMed]
  17. J. M. Zodrow, J. J. Stegeman, and R. L. Tanguay, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish,” Aquat. Toxicol. 66(1), 25–38 (2004).
    [Crossref] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  19. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [Crossref] [PubMed]
  20. K. Wang and Z. Ding, “Spectral calibration in spectral domain optical coherence tomography,” Chin. Opt. Lett. 6(12), 902–904 (2008).
    [Crossref]
  21. G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao, and Y. Zhang, “Adaptive optics optical coherence tomography for retina imaging,” Chin. Opt. Lett. 6(6), 424–425 (2008).
    [Crossref]
  22. P. Xi, K. Mei, T. Bräuler, C. Zhou, and Q. Ren, “Evaluation of spectrometric parameters in spectral-domain optical coherence tomography,” Appl. Opt. 50(3), 366–372 (2011).
    [Crossref] [PubMed]
  23. Z. Zhan, X. Zhang, Q. Ye, and S. Xie, “Measurement of crater geometries after laser ablation of bone tissue with optical coherence tomography,” Chin. Opt. Lett. 6(12), 896–898 (2008).
    [Crossref]
  24. Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
    [Crossref] [PubMed]
  25. L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
    [PubMed]
  26. R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
    [Crossref] [PubMed]
  27. J. Zhang, W. Ge, and Z. Yuan, “In vivo three-dimensional characterization of the adult zebrafish brain using a 1325 nm spectral-domain optical coherence tomography system with the 27 frame/s video rate,” Biomed. Opt. Express 6(10), 3932–3940 (2015).
    [Crossref] [PubMed]
  28. J. Zhang, Z. W. Zhang, W. Ge, and Z. Yuan, “Long-term in vivo monitoring of injury induced brain regeneration of the adult zebrafish by using spectral domain optical coherence tomography,” Chin. Opt. Lett. 14(8), 081702 (2016).
    [Crossref]
  29. W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
    [Crossref] [PubMed]
  30. M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
    [Crossref] [PubMed]
  31. Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
    [Crossref] [PubMed]
  32. A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
    [Crossref] [PubMed]
  33. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  34. W. Goessling, T. E. North, and L. I. Zon, “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nat. Methods 4(7), 551–553 (2007).
    [Crossref] [PubMed]
  35. S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
    [Crossref] [PubMed]
  36. K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
    [Crossref]
  37. R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
    [Crossref] [PubMed]
  38. S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
    [PubMed]

2018 (2)

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

2017 (1)

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (2)

J. Zhang, W. Ge, and Z. Yuan, “In vivo three-dimensional characterization of the adult zebrafish brain using a 1325 nm spectral-domain optical coherence tomography system with the 27 frame/s video rate,” Biomed. Opt. Express 6(10), 3932–3940 (2015).
[Crossref] [PubMed]

S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
[Crossref] [PubMed]

2014 (1)

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

2013 (2)

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

2012 (3)

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref] [PubMed]

P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends Mol. Med. 18(6), 348–359 (2012).
[Crossref] [PubMed]

S. Pasqualetti, G. Banfi, and M. Mariotti, “The zebrafish scale as model to study the bone mineralization process,” J. Mol. Histol. 43(5), 589–595 (2012).
[Crossref] [PubMed]

2011 (3)

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

R. S. Weinstein, “Glucocorticoid-induced bone disease,” N. Engl. J. Med. 365(1), 62–70 (2011).
[Crossref] [PubMed]

P. Xi, K. Mei, T. Bräuler, C. Zhou, and Q. Ren, “Evaluation of spectrometric parameters in spectral-domain optical coherence tomography,” Appl. Opt. 50(3), 366–372 (2011).
[Crossref] [PubMed]

2010 (1)

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

2008 (6)

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao, and Y. Zhang, “Adaptive optics optical coherence tomography for retina imaging,” Chin. Opt. Lett. 6(6), 424–425 (2008).
[Crossref]

Z. Zhan, X. Zhang, Q. Ye, and S. Xie, “Measurement of crater geometries after laser ablation of bone tissue with optical coherence tomography,” Chin. Opt. Lett. 6(12), 896–898 (2008).
[Crossref]

K. Wang and Z. Ding, “Spectral calibration in spectral domain optical coherence tomography,” Chin. Opt. Lett. 6(12), 902–904 (2008).
[Crossref]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

2007 (5)

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

W. Goessling, T. E. North, and L. I. Zon, “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nat. Methods 4(7), 551–553 (2007).
[Crossref] [PubMed]

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007).
[Crossref] [PubMed]

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet. 8(5), 353–367 (2007).
[Crossref] [PubMed]

2006 (1)

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

2005 (1)

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[Crossref] [PubMed]

2004 (2)

J. M. Zodrow, J. J. Stegeman, and R. L. Tanguay, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish,” Aquat. Toxicol. 66(1), 25–38 (2004).
[Crossref] [PubMed]

P. Goldsmith, “Zebrafish as a pharmacological tool: the how, why and when,” Curr. Opin. Pharmacol. 4(5), 504–512 (2004).
[Crossref] [PubMed]

2002 (2)

L. A. Fitzpatrick, “Secondary causes of osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
[Crossref] [PubMed]

J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
[Crossref] [PubMed]

1998 (1)

B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” J. Bone Miner. Res. 13(5), 763–773 (1998).
[Crossref] [PubMed]

1996 (2)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Abdelilah, S.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Alia, A.

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

Aros, M.

J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
[Crossref] [PubMed]

Bahary, N.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Banfi, G.

S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
[Crossref] [PubMed]

S. Pasqualetti, G. Banfi, and M. Mariotti, “The zebrafish scale as model to study the bone mineralization process,” J. Mol. Histol. 43(5), 589–595 (2012).
[Crossref] [PubMed]

Borgström, F.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Brand, M.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Bräuler, T.

Brunt, L. H.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

Cao, M.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Carroll, J.

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Charukamnoetkanok, P.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Chen, D. Y.

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Cheng, K. C.

J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
[Crossref] [PubMed]

Collery, R. F.

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

Compston, J.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Congiu, T.

S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
[Crossref] [PubMed]

Cooper, C.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Currie, P. D.

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet. 8(5), 353–367 (2007).
[Crossref] [PubMed]

Dai, Y.

De Groot, H. J.

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

Dicker, A. P.

G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007).
[Crossref] [PubMed]

Ding, Z.

Driever, W.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Dubis, A. M.

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

Fitzpatrick, L. A.

L. A. Fitzpatrick, “Secondary causes of osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freidin, A.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Fu, Q.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Fujimoto, J. G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Gabriele, M. L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Ge, W.

Geurtzen, K.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Goessling, W.

W. Goessling, T. E. North, and L. I. Zon, “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nat. Methods 4(7), 551–553 (2007).
[Crossref] [PubMed]

Goldsmith, P.

P. Goldsmith, “Zebrafish as a pharmacological tool: the how, why and when,” Curr. Opin. Pharmacol. 4(5), 504–512 (2004).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hahn, K. M.

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Hammond, C. L.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

Hashim, S. I.

K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
[Crossref] [PubMed]

He, W.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hofbauer, L. C.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Hou, Y.

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, X.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Huang, Y.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Huisken, J.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref] [PubMed]

Huitema, L. F.

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

Huitema, L. F. A.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

Huo, K.

K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
[Crossref] [PubMed]

Ishikawa, H.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Johnson, G. L.

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Jönsson, B.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Kabli, S.

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

Kagemann, L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Kanis, J. A.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Kari, G.

G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007).
[Crossref] [PubMed]

Kassi, E.

P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends Mol. Med. 18(6), 348–359 (2012).
[Crossref] [PubMed]

Kaufmann, A.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Khosla, S.

B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” J. Bone Miner. Res. 13(5), 763–773 (1998).
[Crossref] [PubMed]

Knopf, F.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Lee, C. S. D.

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

Leng, B.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Li, X.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Lieschke, G. J.

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet. 8(5), 353–367 (2007).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, J.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Lin, Z.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Link, B. A.

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

Linney, E.

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Liu, J.

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

Ma, Y.

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

Malicki, J.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Malone, M. H.

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Mao, J.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Mariotti, M.

S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
[Crossref] [PubMed]

S. Pasqualetti, G. Banfi, and M. Mariotti, “The zebrafish scale as model to study the bone mineralization process,” J. Mol. Histol. 43(5), 589–595 (2012).
[Crossref] [PubMed]

McCloskey, E. V.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Mei, K.

Mei, X.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Melton, L. J.

B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” J. Bone Miner. Res. 13(5), 763–773 (1998).
[Crossref] [PubMed]

Meng, C.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Mickoleit, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref] [PubMed]

Mitchell, R. E.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

Moore, J. L.

J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
[Crossref] [PubMed]

Moutsatsou, P.

P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends Mol. Med. 18(6), 348–359 (2012).
[Crossref] [PubMed]

Neuhauss, S. C.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

North, T. E.

W. Goessling, T. E. North, and L. I. Zon, “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nat. Methods 4(7), 551–553 (2007).
[Crossref] [PubMed]

Ouyang, Y. C.

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Pan, Y.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

Papavassiliou, A. G.

P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends Mol. Med. 18(6), 348–359 (2012).
[Crossref] [PubMed]

Pasqualetti, S.

S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
[Crossref] [PubMed]

S. Pasqualetti, G. Banfi, and M. Mariotti, “The zebrafish scale as model to study the bone mineralization process,” J. Mol. Histol. 43(5), 589–595 (2012).
[Crossref] [PubMed]

Peterson, R. T.

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qiu, J.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Qu, Q. M.

K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
[Crossref] [PubMed]

Rao, X.

Rauner, M.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Ren, Q.

Riggs, B. L.

B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” J. Bone Miner. Res. 13(5), 763–773 (1998).
[Crossref] [PubMed]

Rodeck, U.

G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007).
[Crossref] [PubMed]

Schatten, H.

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Schier, A. F.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Schneider, J. E.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Schulte-Merker, S.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

Schuman, J. S.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sciaky, N.

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Severn, C.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

Shi, G.

Skinner, R. E. H.

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

Solnica-Krezel, L.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Spaink, H. P.

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

Spoorendonk, K. M.

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

Stainier, D. Y.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Stalheim, L.

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Stegeman, J. J.

J. M. Zodrow, J. J. Stegeman, and R. L. Tanguay, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish,” Aquat. Toxicol. 66(1), 25–38 (2004).
[Crossref] [PubMed]

Stelzer, E. H.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Stemple, D. L.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Steudel, K. G.

J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ström, O.

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Su, H.

K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
[Crossref] [PubMed]

Su, Y.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Sun, M.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Sun, Q. Y.

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tanguay, R. L.

J. M. Zodrow, J. J. Stegeman, and R. L. Tanguay, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish,” Aquat. Toxicol. 66(1), 25–38 (2004).
[Crossref] [PubMed]

Tao, H.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Townsend, K. A.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Vanoevelen, J.

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

Verbeek, F. J.

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

Vernet, A.

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

Veth, K. N.

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

Waltzer, W. C.

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

Wang, J.

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

Wang, K.

Wang, L.

Wang, S.

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

Wang, Z.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

Weber, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref] [PubMed]

Wei, X.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Weinstein, R. S.

R. S. Weinstein, “Glucocorticoid-induced bone disease,” N. Engl. J. Med. 365(1), 62–70 (2011).
[Crossref] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Wollstein, G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Wu, M.

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

Xi, P.

Xie, H.

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

Xie, S.

Xing, C.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Xu, J.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Xue, Y.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Yan, Y.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Yang, T.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Ye, Q.

Yin, H.

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

Yong, K. L.

K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
[Crossref] [PubMed]

Yuan, Z.

Zhan, Z.

Zhang, J.

Zhang, W.

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao, and Y. Zhang, “Adaptive optics optical coherence tomography for retina imaging,” Chin. Opt. Lett. 6(6), 424–425 (2008).
[Crossref]

Zhang, Y. Z.

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Zhang, Z. W.

Zhou, C.

Zhu, Z.

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Zodrow, J. M.

J. M. Zodrow, J. J. Stegeman, and R. L. Tanguay, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish,” Aquat. Toxicol. 66(1), 25–38 (2004).
[Crossref] [PubMed]

Zon, L. I.

W. Goessling, T. E. North, and L. I. Zon, “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nat. Methods 4(7), 551–553 (2007).
[Crossref] [PubMed]

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[Crossref] [PubMed]

Zou, J.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Zwartkruis, F.

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Appl. Opt. (1)

Aquat. Toxicol. (1)

J. M. Zodrow, J. J. Stegeman, and R. L. Tanguay, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish,” Aquat. Toxicol. 66(1), 25–38 (2004).
[Crossref] [PubMed]

Arch. Osteoporos. (1)

O. Ström, F. Borgström, J. A. Kanis, J. Compston, C. Cooper, E. V. McCloskey, and B. Jönsson, “Osteoporosis: burden, health care provision and opportunities in the EU,” Arch. Osteoporos. 6(1–2), 59–155 (2011).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

W. Zhang, J. Xu, J. Qiu, C. Xing, X. Li, B. Leng, Y. Su, J. Lin, J. Lin, X. Mei, Y. Huang, Y. Pan, and Y. Xue, “Novel and rapid osteoporosis model established in zebrafish using high iron stress,” Biochem. Biophys. Res. Commun. 496(2), 654–660 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomed. Pharmacother. (1)

H. Yin, S. Wang, Y. Zhang, M. Wu, J. Wang, and Y. Ma, “Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae,” Biomed. Pharmacother. 97, 995–999 (2018).
[Crossref] [PubMed]

Biotechniques (1)

J. L. Moore, M. Aros, K. G. Steudel, and K. C. Cheng, “Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis,” Biotechniques 32(2), 296–298 (2002).
[Crossref] [PubMed]

BMC Biotechnol. (1)

M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007).
[Crossref] [PubMed]

Chin. Opt. Lett. (4)

Clin. Interv. Aging (1)

J. Xu, M. Sun, Z. Wang, Q. Fu, M. Cao, Z. Zhu, C. Meng, Y. Yan, J. Mao, H. Tao, X. Huang, Z. Lin, T. Yang, and W. He, “Awareness of osteoporosis and its relationship with calcaneus quantitative ultrasound in a large Chinese community population,” Clin. Interv. Aging 8, 789–796 (2013).
[PubMed]

Clin. Pharmacol. Ther. (1)

G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007).
[Crossref] [PubMed]

Curr. Opin. Pharmacol. (1)

P. Goldsmith, “Zebrafish as a pharmacological tool: the how, why and when,” Curr. Opin. Pharmacol. 4(5), 504–512 (2004).
[Crossref] [PubMed]

Dev. Growth Differ. (1)

Y. Z. Zhang, Y. C. Ouyang, Y. Hou, H. Schatten, D. Y. Chen, and Q. Y. Sun, “Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis,” Dev. Growth Differ. 50(3), 189–201 (2008).
[Crossref] [PubMed]

Development (2)

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref] [PubMed]

S. C. Neuhauss, L. Solnica-Krezel, A. F. Schier, F. Zwartkruis, D. L. Stemple, J. Malicki, S. Abdelilah, D. Y. Stainier, and W. Driever, “Mutations affecting craniofacial development in zebrafish,” Development 123(1), 357–367 (1996).
[PubMed]

Int. J. Exp. Pathol. (1)

S. Pasqualetti, T. Congiu, G. Banfi, and M. Mariotti, “Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale,” Int. J. Exp. Pathol. 96(1), 11–20 (2015).
[Crossref] [PubMed]

J. Appl. Ichthyology (1)

K. M. Spoorendonk, C. L. Hammond, L. F. Huitema, J. Vanoevelen, and S. Schulte-Merker, “Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging,” J. Appl. Ichthyology 26(2), 219–224 (2010).
[Crossref]

J. Biomed. Opt. (2)

Z. Wang, C. S. D. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[Crossref] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

J. Bone Miner. Res. (2)

B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” J. Bone Miner. Res. 13(5), 763–773 (1998).
[Crossref] [PubMed]

K. Geurtzen, A. Vernet, A. Freidin, M. Rauner, L. C. Hofbauer, J. E. Schneider, M. Brand, and F. Knopf, “Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues,” J. Bone Miner. Res. 32(12), 2476–2488 (2017).
[Crossref] [PubMed]

J. Mol. Histol. (1)

S. Pasqualetti, G. Banfi, and M. Mariotti, “The zebrafish scale as model to study the bone mineralization process,” J. Mol. Histol. 43(5), 589–595 (2012).
[Crossref] [PubMed]

Mayo Clin. Proc. (1)

L. A. Fitzpatrick, “Secondary causes of osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
[Crossref] [PubMed]

Mol. Vis. (1)

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

N. Engl. J. Med. (1)

R. S. Weinstein, “Glucocorticoid-induced bone disease,” N. Engl. J. Med. 365(1), 62–70 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

W. Goessling, T. E. North, and L. I. Zon, “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nat. Methods 4(7), 551–553 (2007).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[Crossref] [PubMed]

Nat. Rev. Genet. (1)

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet. 8(5), 353–367 (2007).
[Crossref] [PubMed]

Osteoarthritis Cartilage (1)

R. E. Mitchell, L. F. A. Huitema, R. E. H. Skinner, L. H. Brunt, C. Severn, S. Schulte-Merker, and C. L. Hammond, “New tools for studying osteoarthritis genetics in zebrafish,” Osteoarthritis Cartilage 21(2), 269–278 (2013).
[Crossref] [PubMed]

PLoS One (1)

R. F. Collery, K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link, “Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization,” PLoS One 9(10), e110699 (2014).
[Crossref] [PubMed]

Science (2)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Trends Mol. Med. (1)

P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends Mol. Med. 18(6), 348–359 (2012).
[Crossref] [PubMed]

World J. Exp. Med. (1)

K. Huo, S. I. Hashim, K. L. Yong, H. Su, and Q. M. Qu, “Impact and risk factors of post-stroke bone fracture,” World J. Exp. Med. 6(1), 1–8 (2016).
[Crossref] [PubMed]

Zebrafish (1)

S. Kabli, A. Alia, H. P. Spaink, F. J. Verbeek, and H. J. De Groot, “Magnetic resonance microscopy of the adult zebrafish,” Zebrafish 3(4), 431–439 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 SD-OCT imaging system used in this study.
Fig. 2
Fig. 2 The experimental protocols of this study.
Fig. 3
Fig. 3 (a) The spectrum of superluminescent diode used in the OCT system. (b) Normalized amplitude OCT signal of a B-scan line across a blade with sharp edges. (c) The lateral resolutions of the OCT imaging system. (d) OCT images of a hair section at different position.
Fig. 4
Fig. 4 Whole mount chine alizarin red staining results (a) and corresponding optical density (b) of normal zebrafish or zebrafish induced with 125 μM prednisolone 21 days.
Fig. 5
Fig. 5 (a) OCT image and histological result (b) of normal zebrafish skull. (c) OCT image and histological result (d) of skull of 21-days prednisolone (125 μM) induced zebrafish model.
Fig. 6
Fig. 6 The sagittal OCT images (a) and the coronal SD-OCT images (b) of adult zebrafish before (0 day) or after125 μM prednisolone treatment (7, 14 or 21 days).
Fig. 7
Fig. 7 (a) In vivo SD-OCT images of normal zebrafish and zebrafish treated with different concentrations of prednisolone (50 μM or 125 μM) at 0, 7, 14 or 21 days. (b) The defect number of skull vs exposure time and concentration of prednisolone.
Fig. 8
Fig. 8 (a) 3D OCT images of zebrafish head treated prednisolone (125 μM, 7 days). (b) and (c) is the sagittal images and the coronal image obtained from virtual slices along green dotted lines. (d) Corresponding histological image of the coronal image.

Metrics