Abstract

High resolution fluorescence microscopy requires optimization of the protocols for biological sample preparation. The optical and chemical characteristics of mounting media are among the things that could be modified to achieve optimal image formation. In our search for chemical substances that could perform as mounting media, 3,3′-thiodipropanol (TDP) emerged as a sulfide with potentially interesting characteristics. In this work, several tests of its performance as a mounting medium for fluorescence microscopy of biological samples were performed, including the labeling of filamentous actin with fluorescent phalloidins. The refractive index dispersion curve of pH-adjusted TDP was experimentally obtained in the visible range and compared to the dispersion curves of commercial and lab-made mounting media. The effects on the fluorescence of commonly used dyes were tested by using TDP as a solvent and measuring the relative fluorescence quantum yield of the dyes. By being able to mix TDP in any concentration with water and 2,2′-thiodiethanol (TDE), it was possible not only to fine-tune the refractive index of the resulting solution, but also to preserve the compatibility of TDP with the most popular and efficient fluorescent actin staining used in biological microscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis of dye conjugates to visualize the cancer cells using fluorescence microscopy

Yang Pu, Rui Tang, Jianpeng Xue, W. B. Wang, Baogang Xu, and S. Achilefu
Appl. Opt. 53(11) 2345-2351 (2014)

Imaging subcellular scattering contrast by using combined optical coherence and multiphoton microscopy

Shuo Tang, Chung-Ho Sun, Tatiana B. Krasieva, Zhongping Chen, and Bruce J. Tromberg
Opt. Lett. 32(5) 503-505 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
    [Crossref]
  2. H. (Heinrich) Hovestadt, J. D. (J. D. Everett, and A. Everett, Jena Glass and Its Scientific and Industrial Applications (London, New York, Macmillan, 1902).
  3. T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
    [Crossref] [PubMed]
  4. R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (Prentice-Hall, Inc., 2006).
  5. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  6. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).
  7. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
    [Crossref]
  8. “immersionsoele.pdf,” (n.d.).
  9. N. Olivier, D. Keller, V. S. Rajan, P. Gönczy, and S. Manley, “Simple buffers for 3D STORM microscopy,” Biomed. Opt. Express 4(6), 885–899 (2013).
    [Crossref] [PubMed]
  10. J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
    [Crossref] [PubMed]
  11. E. M. De La Cruz and T. D. Pollard, “Transient kinetic analysis of rhodamine phalloidin binding to actin filaments,” Biochemistry 33(48), 14387–14392 (1994).
    [Crossref] [PubMed]
  12. M. Kubista, B. Akerman, and B. Nordén, “Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy,” Biochemistry 26(14), 4545–4553 (1987).
    [Crossref] [PubMed]
  13. J. Pawley, ed., Handbook of Biological Confocal Microscopy, 3rd ed. (Springer US, 2006).
  14. G. C. Sieck, C. B. Mantilla, and Y. S. Prakash, “Volume measurements in confocal microscopy,” Methods Enzymol. 307, 296–315 (1999).
    [Crossref] [PubMed]
  15. C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
    [Crossref] [PubMed]
  16. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
    [Crossref] [PubMed]
  17. D. S. Richardson and J. W. Lichtman, “Clarifying Tissue Clearing,” Cell 162(2), 246–257 (2015).
    [Crossref] [PubMed]
  18. M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
    [Crossref] [PubMed]
  19. A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
    [Crossref]
  20. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  21. S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
    [Crossref] [PubMed]
  22. Z. Wei, Y. Knapp, and V. Deplano, “Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles,” Exp. Fluids 57(5), 68 (2016).
    [Crossref]
  23. R. Saksena, K. T. Christensen, and A. J. Pearlstein, “Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios,” Phys. Fluids 27(8), 087103 (2015).
    [Crossref]

2018 (1)

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

2016 (2)

Z. Wei, Y. Knapp, and V. Deplano, “Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles,” Exp. Fluids 57(5), 68 (2016).
[Crossref]

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

2015 (3)

D. S. Richardson and J. W. Lichtman, “Clarifying Tissue Clearing,” Cell 162(2), 246–257 (2015).
[Crossref] [PubMed]

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

R. Saksena, K. T. Christensen, and A. J. Pearlstein, “Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios,” Phys. Fluids 27(8), 087103 (2015).
[Crossref]

2013 (1)

2012 (1)

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).

2007 (1)

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

2006 (2)

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2003 (1)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[Crossref]

1999 (2)

J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
[Crossref] [PubMed]

G. C. Sieck, C. B. Mantilla, and Y. S. Prakash, “Volume measurements in confocal microscopy,” Methods Enzymol. 307, 296–315 (1999).
[Crossref] [PubMed]

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1994 (1)

E. M. De La Cruz and T. D. Pollard, “Transient kinetic analysis of rhodamine phalloidin binding to actin filaments,” Biochemistry 33(48), 14387–14392 (1994).
[Crossref] [PubMed]

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

1992 (1)

A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
[Crossref]

1987 (1)

M. Kubista, B. Akerman, and B. Nordén, “Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy,” Biochemistry 26(14), 4545–4553 (1987).
[Crossref] [PubMed]

Akerman, B.

M. Kubista, B. Akerman, and B. Nordén, “Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy,” Biochemistry 26(14), 4545–4553 (1987).
[Crossref] [PubMed]

Anderson, K. I.

J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
[Crossref] [PubMed]

Becker, D. L.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Bolte, S.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Cannaya, V.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Christensen, K. T.

R. Saksena, K. T. Christensen, and A. J. Pearlstein, “Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios,” Phys. Fluids 27(8), 087103 (2015).
[Crossref]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Davidson, R. S.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

De La Cruz, E. M.

E. M. De La Cruz and T. D. Pollard, “Transient kinetic analysis of rhodamine phalloidin binding to actin filaments,” Biochemistry 33(48), 14387–14392 (1994).
[Crossref] [PubMed]

Deplano, V.

Z. Wei, Y. Knapp, and V. Deplano, “Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles,” Exp. Fluids 57(5), 68 (2016).
[Crossref]

Djordjevic, B. D.

A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
[Crossref]

Dos Santos, M.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Ekwobi, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Engelhardt, J.

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

Fouquet, C.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Fujimoto, S.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Gao, Y.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Giessen, H.

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).

Gilles, J.-F.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Gissibl, T.

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).

Gönczy, P.

Grozdanic, D. K.

A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
[Crossref]

Hahne, P.

J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
[Crossref] [PubMed]

Heck, N.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Hell, S. W.

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

Imai, T.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Jing, J.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Ke, M.-T.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Kedenburg, S.

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).

Keller, D.

Kitajima, T. S.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Knapp, Y.

Z. Wei, Y. Knapp, and V. Deplano, “Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles,” Exp. Fluids 57(5), 68 (2016).
[Crossref]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Kubista, M.

M. Kubista, B. Akerman, and B. Nordén, “Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy,” Biochemistry 26(14), 4545–4553 (1987).
[Crossref] [PubMed]

Lang, M. C.

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

Lichtman, J. W.

D. S. Richardson and J. W. Lichtman, “Clarifying Tissue Clearing,” Cell 162(2), 246–257 (2015).
[Crossref] [PubMed]

Manley, S.

Mantilla, C. B.

G. C. Sieck, C. B. Mantilla, and Y. S. Prakash, “Volume measurements in confocal microscopy,” Methods Enzymol. 307, 296–315 (1999).
[Crossref] [PubMed]

Medda, R.

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

Morel, M.-P.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Nakai, Y.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Nordén, B.

M. Kubista, B. Akerman, and B. Nordén, “Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy,” Biochemistry 26(14), 4545–4553 (1987).
[Crossref] [PubMed]

Olivier, N.

Pearlstein, A. J.

R. Saksena, K. T. Christensen, and A. J. Pearlstein, “Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios,” Phys. Fluids 27(8), 087103 (2015).
[Crossref]

Pollard, T. D.

E. M. De La Cruz and T. D. Pollard, “Transient kinetic analysis of rhodamine phalloidin binding to actin filaments,” Biochemistry 33(48), 14387–14392 (1994).
[Crossref] [PubMed]

Prakash, Y. S.

G. C. Sieck, C. B. Mantilla, and Y. S. Prakash, “Volume measurements in confocal microscopy,” Methods Enzymol. 307, 296–315 (1999).
[Crossref] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Radojkovic, N.

A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
[Crossref]

Rajan, V. S.

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Richardson, D. S.

D. S. Richardson and J. W. Lichtman, “Clarifying Tissue Clearing,” Cell 162(2), 246–257 (2015).
[Crossref] [PubMed]

Rottner, K.

J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
[Crossref] [PubMed]

Saksena, R.

R. Saksena, K. T. Christensen, and A. J. Pearlstein, “Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios,” Phys. Fluids 27(8), 087103 (2015).
[Crossref]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[Crossref]

Sato, M.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Schwartzmann, R.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Sieck, G. C.

G. C. Sieck, C. B. Mantilla, and Y. S. Prakash, “Volume measurements in confocal microscopy,” Methods Enzymol. 307, 296–315 (1999).
[Crossref] [PubMed]

Small, J.

J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
[Crossref] [PubMed]

Song, Q.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Staudt, T.

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Sun, S.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Takayama, R.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Tasic, A. Z.

A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
[Crossref]

Theodossiou, T. A.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Thrasivoulou, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Trembleau, A.

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Vieweg, M.

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).

Wei, Z.

Z. Wei, Y. Knapp, and V. Deplano, “Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles,” Exp. Fluids 57(5), 68 (2016).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Xiao, S.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, W.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Yoshida, S.

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Yu, X.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Zhang, C.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

ACS Nano (1)

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces,” ACS Nano 12(3), 2151–2159 (2018).
[Crossref] [PubMed]

Biochemistry (2)

E. M. De La Cruz and T. D. Pollard, “Transient kinetic analysis of rhodamine phalloidin binding to actin filaments,” Biochemistry 33(48), 14387–14392 (1994).
[Crossref] [PubMed]

M. Kubista, B. Akerman, and B. Nordén, “Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy,” Biochemistry 26(14), 4545–4553 (1987).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Cell (1)

D. S. Richardson and J. W. Lichtman, “Clarifying Tissue Clearing,” Cell 162(2), 246–257 (2015).
[Crossref] [PubMed]

Cell Reports (1)

M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T. S. Kitajima, M. Sato, and T. Imai, “Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent,” Cell Reports 14(11), 2718–2732 (2016).
[Crossref] [PubMed]

Exp. Fluids (1)

Z. Wei, Y. Knapp, and V. Deplano, “Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles,” Exp. Fluids 57(5), 68 (2016).
[Crossref]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[Crossref]

J. Chem. Eng. Data (1)

A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data 37(3), 310–313 (1992).
[Crossref]

J. Microsc. (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Methods Enzymol. (1)

G. C. Sieck, C. B. Mantilla, and Y. S. Prakash, “Volume measurements in confocal microscopy,” Methods Enzymol. 307, 296–315 (1999).
[Crossref] [PubMed]

Microsc. Res. Tech. (2)

T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy,” Microsc. Res. Tech. 70(1), 1–9 (2007).
[Crossref] [PubMed]

J. Small, K. Rottner, P. Hahne, and K. I. Anderson, “Visualising the actin cytoskeleton,” Microsc. Res. Tech. 47(1), 3–17 (1999).
[Crossref] [PubMed]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Mater. Express, OME (1)

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express, OME 2, 1588–1611 (2012).

Phys. Fluids (1)

R. Saksena, K. T. Christensen, and A. J. Pearlstein, “Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios,” Phys. Fluids 27(8), 087103 (2015).
[Crossref]

PLoS One (1)

C. Fouquet, J.-F. Gilles, N. Heck, M. Dos Santos, R. Schwartzmann, V. Cannaya, M.-P. Morel, R. S. Davidson, A. Trembleau, and S. Bolte, “Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media,” PLoS One 10(3), e0121096 (2015).
[Crossref] [PubMed]

Other (4)

“immersionsoele.pdf,” (n.d.).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (Prentice-Hall, Inc., 2006).

H. (Heinrich) Hovestadt, J. D. (J. D. Everett, and A. Everett, Jena Glass and Its Scientific and Industrial Applications (London, New York, Macmillan, 1902).

J. Pawley, ed., Handbook of Biological Confocal Microscopy, 3rd ed. (Springer US, 2006).

Supplementary Material (1)

NameDescription
» Data File 1       Refractive indices at five wavelenghts for ZEISS Immersol 518F as measured with our system and as described by the producer

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The refractive indices of TDP and TDE at different concentrations in water are described by a linear relation.
Fig. 2
Fig. 2 Experimental data points and Cauchy fitting for the dispersion curve of aTDP, aTDE, the commercial mounting medium Vectashield and the immersion liquid Immersol 518 F.
Fig. 3
Fig. 3 Fluorescent intensity decay along the z axis for the mounting media tested in this work.
Fig. 4
Fig. 4 Solvatochromism of DAPI, AlexaFluor 488 and AlexaFluor 647 dissolved in the media used in this work. A red shift is observed in the absorption and emission spectra of the three different dyes in TDP, as well as in the other mounting media, compared to spectra in PBS.
Fig. 5
Fig. 5 Actin cytoskeleton of HeLa cells labeled with Alexa Fluor 647 phalloidin and mounted a) in PLD, b) aTDP and c) aTDE. Identical acquisition parameters were used for images a, b and c, while laser power was reduced from 3% to 2.4% in panel b to avoid saturation. Panel d is a post processed merge of the DAPI channel and the AlexaFluor 647 image of panel c with increased brightness and contrast. Scale bar 20 μm.
Fig. 6
Fig. 6 Micrographs of 3 cell lines labeled with different fluorescent phalloidins and DAPI, mounted in aTDP. a) HEK293 cells stained with Alexa Fluor 488 phalloidin, b) HeLa cells stained with Alexa Fluor 568 phalloidin and c) Sh-sy5y cells stained with Alexa Fluor 647 phalloidin. Scale bar 20 μm.
Fig. 7
Fig. 7 SiR-actin stained HeLa cells, mounted in a) VS, b) aTDP and c) aTDE. Panel d is a merge of bright field and DAPI staining corresponding to the picture in panel c. Identical acquisition parameters were used for images a, b and c. Scale bar 20 μm.
Fig. 8
Fig. 8 HeLa cells transfected with: pAC actin mCherry and mounted in a) VS and b) aTDP. HeLa cells transfected with γactin EGFP mounted in c) VS and d) aTDP. Scale bar 20 μm.
Fig. 9
Fig. 9 Distribution of regional average sizes of cells mounted in PBS, PLD and aTDP, in blue, green and pink, respectively. The regions where the three overlap are shown in purple, while light brown indicates overlap between PLD and aTDP bars.
Fig. 10
Fig. 10 HeLa cells stained with Alexa Fluor 488 phalloidin and mounted in a) M1, b) M2 and c) M3. Scale bar 20 μm. Identical acquisition parameters were used for the three images, while laser power was reduced from 2% to 1.8% in panel c to avoid saturation.
Fig. 11
Fig. 11 Variation of refractive index of the mixtures according to the relative composition in aTDE and aTDP.

Tables (2)

Tables Icon

Table 1 Constants of Cauchy formula of TDP, TDE, Vectashield and Immersol 518 F at a temperature of 21 °C.

Tables Icon

Table 2 Dispersion of TDP, TDE, Vectashield and Immersol 518 F (Abbe numbers)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n= A 0 + A 1 λ 2 + A 2 λ 4 + A 3 λ 6
Abbe Number V D = n D 1 n F n C

Metrics